cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A357016 Decimal expansion of the asymptotic density of numbers whose exponents in their prime factorization are squares (A197680).

Original entry on oeis.org

6, 4, 1, 1, 1, 5, 1, 6, 1, 3, 5, 9, 3, 5, 1, 4, 3, 1, 4, 4, 7, 7, 0, 6, 1, 8, 3, 8, 4, 4, 2, 4, 4, 6, 0, 4, 1, 5, 9, 2, 0, 8, 9, 4, 0, 4, 0, 9, 2, 5, 7, 4, 6, 5, 2, 6, 8, 5, 5, 6, 0, 9, 4, 1, 0, 5, 3, 3, 0, 7, 2, 3, 9, 3, 8, 3, 2, 0, 4, 0, 9, 7, 3, 4, 5, 4, 2, 1, 1, 8, 4, 6, 7, 4, 0, 0, 6, 9, 3, 5, 6, 3, 6, 3, 5
Offset: 0

Views

Author

Amiram Eldar, Sep 09 2022

Keywords

Comments

Equivalently, the asymptotic density of numbers with an odd number of exponential divisors (A049419).

Examples

			0.64111516135935143144770618384424460415920894040925...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = m = 1000; em = 100; f[x_] := Log[1 + Sum[x^(e^2), {e, 2, em}] - Sum[x^(e^2 + 1), {e, 1, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]

Formula

Equals Product_{p prime} (1 + Sum_{k>=2} (c(k)-c(k-1))/p^k), where c(k) is the characteristic function of the squares (A010052).

A368474 Product of exponents of prime factorization of the numbers whose exponents in their prime power factorization are squares (A197680).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Comments

All the terms are squares (A000290).
The first position of k^2, for k = 1, 2, ..., is 1, 12, 331, 834, 21512290, 26588, ..., which is the position of A085629(k^2) in A197680.

Crossrefs

Similar sequences: A322327, A368472, A368473.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, IntegerQ[Sqrt[#]] &], Times @@ e, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e, ok); for(k = 1, kmax, e = factor(k)[, 2]; ok = 1; for(i = 1, #e, if(!issquare(e[i]), ok = 0; break)); if(ok, print1(vecprod(e), ", ")));}

Formula

a(n) = A005361(A197680(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/d) * Product_{p prime} (1 + Sum_{k>=1} k^2/p^(k^2)) = 1.16776748073813763932..., where d = A357016 is the asymptotic density of A197680.

A369935 The maximal exponent in the prime factorization of the numbers whose all exponents are squares (A197680).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

Differs from A368474 at n = 1, 834, 4154, 5822, 6417, ... .

Crossrefs

Programs

  • Mathematica
    squareQ[n_] := IntegerQ[Sqrt[n]]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, squareQ], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
  • PARI
    lista(kmax) = {my(e, q); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; q = 1; for(i = 1, #e, if(!issquare(e[i]), q = 0; break)); if(q, print1(vecmax(e), ", ")));}

Formula

a(n) = A051903(A197680(n)).
a(n) = A369936(n)^2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (k^2 * (d(k) - d(k-1))) / A357016 = 1.16184898017948977008..., where d(k) = Product_{p prime} (1 - 1/p^2 + Sum_{i=2..k} (1/p^(i^2)-1/p^(i^2+1))) for k >= 1, and d(0) = 0.

A268335 Exponentially odd numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vladimir Shevelev, Feb 01 2016

Keywords

Comments

The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
    Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A268335_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))
    A268335_list = list(islice(A268335_gen(),20)) # Chai Wah Wu, Jun 22 2023

Formula

Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A209061 Exponentially squarefree numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 13 2012

Keywords

Comments

Numbers having only squarefree exponents in their canonical prime factorization.
According to the formula of Theorem 3 [Toth], the density of the exponentially squarefree numbers is 0.9559230158619... (A262276). - Peter J. C. Moses and Vladimir Shevelev, Sep 10 2015
From Vladimir Shevelev, Sep 24 2015: (Start)
A generalization. Let S be a finite or infinite increasing integer sequence s=s(n), s(0)=0.
Let us call a positive number N an exponentially S-number, if all exponents in its prime power factorization are in the sequence S.
Let {u(n)} be the characteristic function of S. Then, for the density h=h(S) of the exponentially S-numbers, we have the representations
h(S) = Product_{prime p} Sum_{j in S} (p-1)/p^(j+1) = Product_{p} (1 + Sum_{j>=1} (u(j) - u(j-1))/p^j). In particular, if S = {0,1}, then the exponentially S-numbers are squarefree numbers; if S consists of 0 and {2^k}A138302%20(see%20%5BShevelev%5D,%202007);%20if%20S%20consists%20of%200%20and%20squarefree%20numbers,%20then%20u(n)=%7Cmu(n)%7C,%20where%20mu(n)%20is%20the%20M%C3%B6bius%20function%20(A008683),%20we%20obtain%20the%20density%20h%20of%20the%20exponentially%20squarefree%20numbers%20(cf.%20Toth's%20link,%20Theorem%203);%20the%20calculation%20of%20h%20with%20a%20very%20high%20degree%20of%20accuracy%20belongs%20to%20_Juan%20Arias-de-Reyna">{k>=0}, then the exponentially S-numbers form A138302 (see [Shevelev], 2007); if S consists of 0 and squarefree numbers, then u(n)=|mu(n)|, where mu(n) is the Möbius function (A008683), we obtain the density h of the exponentially squarefree numbers (cf. Toth's link, Theorem 3); the calculation of h with a very high degree of accuracy belongs to _Juan Arias-de-Reyna (A262276). Note that if S contains 1, then h(S) >= 1/zeta(2) = 6/Pi^2; otherwise h(S) = 0. Indeed, in the latter case, the density of the sequence of exponentially S-numbers does not exceed the density of A001694, which equals 0. (End)
The term "exponentially squarefree number" was apparently coined by Subbarao (1972). - Amiram Eldar, May 28 2025

Crossrefs

Programs

  • Haskell
    a209061 n = a209061_list !! (n-1)
    a209061_list = filter
       (all (== 1) . map (a008966 . fromIntegral) . a124010_row) [1..]
    
  • Mathematica
    Select[Range@ 69, Times @@ Boole@ Map[SquareFreeQ, Last /@ FactorInteger@ #] > 0 &] (* Michael De Vlieger, Sep 07 2015 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); for(i=1,#f,if(!issquarefree(f[i]), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015

Formula

A166234(a(n)) <> 0.
Product_{k=1..A001221(n)} A008966(A124010(n,k)) = 1.
One can prove that the principal term of Toth's asymptotics for the density of this sequence (cf. Toth's link, Theorem 3) equals also Product_{prime p}(Sum_{j in S}(p-1)/p^{j+1})*x, where S is the set of 0 and squarefree numbers. The remainder term O(x^(0.2+t)), where t>0 is arbitrarily small, was obtained by L. Toth while assuming the Riemann Hypothesis. - Vladimir Shevelev, Sep 12 2015

A262675 Exponentially evil numbers.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2015

Keywords

Comments

Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016

Examples

			864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
		

Crossrefs

Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.

Programs

  • Haskell
    a262675 n = a262675_list !! (n-1)
    a262675_list = filter
       (all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 25 2015
    
  • Mathematica
    {1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
    expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
  • PARI
    isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i,2]) % 2, return (0));); return (1);} \\ Michel Marcus, Sep 27 2015
    
  • Perl
    use ntheory ":all"; sub isok { my @f = factor_exp($[0]); return scalar(grep { !(hammingweight($->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015

Formula

Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023

Extensions

More terms from Michel Marcus, Sep 27 2015

A246551 Prime powers p^e where p is a prime and e is odd.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Comments

These are the integers with only one prime factor whose cototient is square, so this sequence is a subsequence of A063752. Indeed, cototient(p^(2k+1)) = (p^k)^2 and cototient(p) = 1 = 1^2. - Bernard Schott, Jan 08 2019
With 1 prepended, this sequence is the lexicographically earliest sequence of distinct numbers whose partial products are all numbers whose exponents in their prime power factorization are squares (A197680). - Amiram Eldar, Sep 24 2024

Crossrefs

Cf. A000961, A246547, A246549, A168363, A197680, subsequence of A171561.
Cf. also A056798 (prime powers with even exponents >= 0).
Subsequence of A063752.

Programs

  • Magma
    [n:n in [2..1000]| #PrimeDivisors(n) eq 1 and IsSquare(n-EulerPhi(n))]; // Marius A. Burtea, May 15 2019
    
  • Mathematica
    Take[Union[Flatten[Table[Prime[n]^(k + 1), {n, 100}, {k, 0, 14, 2}]]], 100] (* Vincenzo Librandi, Jan 10 2019 *)
  • PARI
    for(n=1, 10^4, my(e=isprimepower(n)); if(e%2==1, print1(n, ", ")))
    
  • Python
    from sympy import primepi, integer_nthroot
    def A246551(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0])for k in range(1,x.bit_length(),2)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024

A115063 Natural numbers of the form p^F(n_p)*q^F(n_q)*r^F(n_r)*...*z^F(n_z), where p,q,r,... are distinct primes and F(n) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 01 2006

Keywords

Comments

The complementary sequence is 16, 48, 64, 80, 81, 112, 128, 144, 162, 176, 192, 208, 240, 272, 304, 320, 324, 336, 368, 384, 400, ... - R. J. Mathar, Apr 22 2010
Or exponentially Fibonacci numbers. - Vladimir Shevelev, Nov 15 2015
Sequences A004709, A005117, A046100 are subsequences. - Vladimir Shevelev, Nov 16 2015
Let h_k be the density of the subsequence of A115063 of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i all squares <= k^2. Then for every k>1 there exists eps_k>0 such that for any x from the interval (h_k-eps_k, h_k) there is no sequence S of positive integers such that x is the density of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i are all in S. For a proof, see [Shevelev], the second link. - Vladimir Shevelev, Nov 17 2015
Numbers whose sets of unitary divisors (A077610) and Zeckendorf-infinitary divisors (see A318465) coincide. Also, numbers whose sets of unitary divisors and dual-Zeckendorf-infinitary divisors (see A331109) coincide. - Amiram Eldar, Aug 09 2024

Examples

			12 is a term, since 12=2^2*3^1 and the exponents 2 and 1 are terms of Fibonacci sequence (A000045). - _Vladimir Shevelev_, Nov 15 2015
		

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := IntegerQ @ Sqrt[5 n^2 - 4] || IntegerQ @ Sqrt[5 n^2 + 4]; aQ[n_] := AllTrue[FactorInteger[n][[;;, 2]], fibQ]; Select[Range[100], aQ] (* Amiram Eldar, Oct 06 2019 *)

Formula

Sum_{i<=x, i is in A115063} 1 = h*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and h = Product_{prime p}(1 + Sum_{i>=2} (u(i)-u(i-1))/p^i) = 0.944335905... where u(n) is the characteristic function of sequence A000045. The calculations of h over the formula were done independently by Juan Arias-de-Reyna and Peter J. C. Moses.
For a proof of the formula, see [Shevelev], the first link. - Vladimir Shevelev, Nov 17 2015

Extensions

a(35) inserted by Amiram Eldar, Oct 06 2019

A369937 Numbers whose maximal exponent in their prime factorization is square.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

First differs from A366762 at n = 84, and from A197680, A361177 and A369210 at n = 95.
Numbers k such that A051903(k) is square.
The asymptotic density of this sequence is 1/zeta(2) + Sum_{k>=2} (1/zeta(k^2+1) - 1/zeta(k^2)) = 0.64939447949574562687... .

Crossrefs

Programs

  • Mathematica
    Select[Range[100], IntegerQ@ Sqrt[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || issquare(vecmax(factor(k)[, 2])), print1(k, ", ")));

A361177 Exponentially powerful numbers: numbers whose exponents in their canonical prime factorization are all powerful numbers (A001694).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2023

Keywords

Comments

First differs from it subsequence A197680 at n = 167: a(167) = 256 is not a term of A197680.
The asymptotic density of this sequence is Product_{p prime} ((1 - 1/p)*(1 + Sum_{i>=1} 1/p^A001694(i))) = 0.6427901996... .

Crossrefs

Cf. A001694.
Similar sequences: A197680, A209061, A138302, A268335.

Programs

  • Mathematica
    powQ[n_] := n == 1 || Min[FactorInteger[n][[;; , 2]]] > 1; Select[Range[100], AllTrue[FactorInteger[#][[;;, 2]], powQ] &]
  • PARI
    ispow(n) = {n == 1 || vecmin(factor(n)[,2]) > 1; }
    is(n) = {my(e = factor(n)[, 2]); if(n == 1, return(1)); for(i=1, #e, if(!ispow(e[i]), return(0))); 1;}
Showing 1-10 of 22 results. Next