cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373459 Expansion of Sum_{p prime} x^p/(1 - (p*x)^p).

Original entry on oeis.org

0, 1, 1, 4, 1, 43, 1, 64, 729, 3381, 1, 20707, 1, 827639, 10297066, 16384, 1, 14414443, 1, 30517840269, 678610493338, 285312719187, 1, 10464547507, 95367431640625, 302875123369469, 282429536481, 558545864150392871, 1, 298030849742873568, 1, 1073741824
Offset: 1

Views

Author

Seiichi Manyama, Jun 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Boole[PrimeQ[d]]d^(n-d),{d,Divisors[n]}]; Array[a,32] (* Stefano Spezia, Mar 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, isprime(d)*d^(n-d));

Formula

a(n) = Sum_{p|n prime} p^(n - p).
If p is prime, a(p) = 1.

A322080 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{p|n, p prime} p^k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 4, 3, 1, 0, 8, 9, 2, 1, 0, 16, 27, 4, 5, 2, 0, 32, 81, 8, 25, 5, 1, 0, 64, 243, 16, 125, 13, 7, 1, 0, 128, 729, 32, 625, 35, 49, 2, 1, 0, 256, 2187, 64, 3125, 97, 343, 4, 3, 2, 0, 512, 6561, 128, 15625, 275, 2401, 8, 9, 7, 1, 0, 1024, 19683, 256, 78125, 793, 16807, 16, 27, 29, 11, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  0,  0,   0,    0,    0,     0,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  3,   9,   27,   81,   243,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  5,  25,  125,  625,  3125,  ...
  2,  5,  13,   35,   97,   275,  ...
		

Crossrefs

Columns k=0..4 give A001221, A008472, A005063, A005064, A005065.
Cf. A109974, A200768 (diagonal), A285425, A286880, A321258.

Programs

  • Mathematica
    Table[Function[k, Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[Prime[j]^k x^Prime[j]/(1 - x^Prime[j]), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={vecsum([p^k | p<-factor(n)[,1]])}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} prime(j)^k*x^prime(j)/(1 - x^prime(j)).

A318969 Expansion of exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^k ) * x^k/k).

Original entry on oeis.org

1, 0, 2, 9, 6, 643, 182, 118953, 6019, 242630, 2243190, 25938251679, 78106516, 23349992199606, 288964822371, 46755212195033, 226472341461312, 48661337027901364945, 18066374340919781, 104224677113940850317679, 440728415311733637734, 208546898802899685866735, 972477473959172989443327
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    nmax = 22; CoefficientList[Series[Product[1/(1 - Prime[k]^Prime[k] x^Prime[k])^(1/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 22}]

Formula

G.f.: Product_{k>=1} 1/(1 - prime(k)^prime(k)*x^prime(k))^(1/prime(k)).
Showing 1-3 of 3 results.