cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203019 Number of elevated peakless Motzkin paths.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199
Offset: 0

Views

Author

Keywords

Comments

Essentially the same as A004148: a(0)=a(1)=0 and a(n) = A004148(n-2) for n>=2.

Examples

			G.f. = x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 8*x^7 + 17*x^8 + 37*x^9 + ...
		

References

  • A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
  • A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.

Programs

  • GAP
    List([0..40],n->Sum([0..Int((n-1)/2)],m->Binomial(2*m+1,m)*Sum([0..n-2*m-2],k->(Binomial(k,n-2*m-k-2)*Binomial(2*m+k,k)*(-1)^(n-k))/(2*m+1)))); # Muniru A Asiru, Aug 13 2018
  • Mathematica
    terms = 34;
    A[] = 0; Do[A[x] = x (x - A[x] / (A[x] - 1)) + O[x]^terms, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 27 2018, after Michael Somos *)
    Table[Sum[Binomial[2*m + 1, m]*Sum[(Binomial[k, n - 2*m - k - 2]* Binomial[2*m + k, k]*(-1)^(n - k))/(2*m + 1), {k, 0, n - 2*m - 2}], {m, 0, Floor[(n - 1)/2]}], {n, 0, 50}] (* G. C. Greubel, Aug 12 2018 *)
  • Maxima
    a(n):=sum((binomial(2*m+1,m)*sum(binomial(k,n-2*m-k-2)*binomial(2*m+k,k)*(-1)^(n-k),k,0,n-2*m-2))/(2*m+1),m,0,(n-1)/2); /* Vladimir Kruchinin, Mar 12 2016 */
    
  • PARI
    {a(n) = local(A); A = O(x); for( k=1, ceil(n / 3), A = x^2 / (1 - x / (1 - A))); polcoeff( A, n)} /* Michael Somos, May 12 2012 */
    

Formula

G.f.: x^2 / (1 - x / (1 - x^2 / (1 - x / (1 - x^2 / (1 - x / (1 - x^2 / ...)))))). - Michael Somos, May 12 2012
G.f. A(x) =: y satisfies y / x = x + y / (1 - y). - Michael Somos, Jan 31 2014
G.f. A(x) =: y satisfies y = x^2 + (x - x^2)*y + y*y. - Michael Somos, Jan 31 2014
Given g.f. A(x), then B(x) = A(x)/x satisfies B(-B(-x)) = x. - Michael Somos, Jan 31 2014
a(n) = Sum_{m=0..(n-1)/2}((binomial(2*m+1,m)*Sum_{k=0..n-2*m-2}(binomial(k,n-2*m-k-2)*binomial(2*m+k,k)*(-1)^(n-k)))/(2*m+1)). - Vladimir Kruchinin, Mar 12 2016
a(n) ~ 5^(1/4) * phi^(2*n - 2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 14 2018
D-finite with recurrence n*a(n) +(-2*n+3)*a(n-1) +(-n+3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jan 25 2023