cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256249 Partial sums of A006257 (Josephus problem).

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 46, 57, 70, 85, 86, 89, 94, 101, 110, 121, 134, 149, 166, 185, 206, 229, 254, 281, 310, 341, 342, 345, 350, 357, 366, 377, 390, 405, 422, 441, 462, 485, 510, 537, 566, 597, 630, 665, 702, 741, 782, 825, 870, 917, 966, 1017, 1070, 1125, 1182, 1241, 1302, 1365, 1366, 1369, 1374
Offset: 0

Views

Author

Omar E. Pol, Mar 20 2015

Keywords

Comments

Also total number of ON states after n generations in one of the four wedges of the one-step rook version (or in one of the four quadrants of the one-step bishop version) of the cellular automaton of A256250.
A006257 gives the number of cells turned ON at n-th stage.
First differs from A255747 at a(11).
First differs from A169779 at a(10).
It appears that the odd terms (a bisection) give A256250.

Examples

			Written as an irregular triangle T(n,k), k >= 1, in which the row lengths are the terms of A011782 the sequence begins:
   0;
   1;
   2,  5;
   6,  9, 14, 21;
  22, 25, 30, 37, 46, 57, 70, 85;
  86, 89, 94,101,110,121,134,149,166,185,206,229,254,281,310,341;
  ...
Right border, a(2^m-1), gives A002450(m) for m >= 0.
a(2^m-2) = A203241(m) for m >= 2.
It appears that this triangle at least shares with the triangles from the following sequences; A151920, A255737, A255747, the positive elements of the columns k, if k is a power of 2.
From _Omar E. Pol_, Jan 03 2016: (Start)
Illustration of initial terms in the fourth quadrant of the square grid:
---------------------------------------------------------------------------
n    a(n)                 Compact diagram
---------------------------------------------------------------------------
0     0     _
1     1    |_|_ _
2     2      |_| |
3     5      |_ _|_ _ _ _
4     6          |_| | | |
5     9          |_ _| | |
6    14          |_ _ _| |
7    21          |_ _ _ _|_ _ _ _ _ _ _ _
8    22                  |_| | | | | | | |
9    25                  |_ _| | | | | | |
10   30                  |_ _ _| | | | | |
11   37                  |_ _ _ _| | | | |
12   46                  |_ _ _ _ _| | | |
13   57                  |_ _ _ _ _ _| | |
14   70                  |_ _ _ _ _ _ _| |
15   85                  |_ _ _ _ _ _ _ _|
.
a(n) is also the total number of cells in the first n regions of the diagram. A006257(n) gives the number of cells in the n-th region of the diagram.
(End)
		

Crossrefs

Programs

Formula

a(n) = (A256250(n+1) - 1)/4.

A171478 a(n) = 6*a(n-1) - 8*a(n-2) + 2 for n > 1; a(0) = 1, a(1) = 8.

Original entry on oeis.org

1, 8, 42, 190, 806, 3318, 13462, 54230, 217686, 872278, 3492182, 13974870, 55911766, 223671638, 894735702, 3579041110, 14316361046, 57265837398, 229064136022, 916258116950, 3665035613526, 14660148745558, 58640607565142
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Second binomial transform of A168648.
Partial sums of A080960.

Crossrefs

Cf. A168648 ((10*2^n+2*(-1)^n)/3, a(0)=1), A080960 (third binomial transform of A010685), A171472, A171473.

Programs

  • GAP
    a:=[1,8];; for n in [3..25] do a[n]:=6*a[n-1]-8*a[n-2]+2; od; a; # Muniru A Asiru, Mar 22 2018
  • Magma
    [(10*4^n-9*2^n+2)/3: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
    
  • Maple
    a:= proc(n) option remember: if n = 0 then 1 elif n = 1 then 8 elif  n >= 2 then 6*procname(n-1) - 8*procname(n-2) + 2 fi; end:
    seq(a(n), n = 0..25); # Muniru A Asiru, Mar 22 2018
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==8,a[n]==6a[n-1]-8a[n-2]+2},a,{n,30}] (* or *) LinearRecurrence[{7,-14,8},{1,8,42},30] (* Harvey P. Dale, May 04 2012 *)
  • PARI
    {m=23; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+2); v}
    

Formula

a(n) = (10*4^n - 9*2^n + 2)/3.
G.f.: (1+x)/((1-x)*(1-2*x)*(1-4*x)).
a(0)=1, a(1)=8, a(2)=42, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, May 04 2012
a(n) = A203241(n+1) + 2^n*(2^(n+1)-1), n>0. - J. M. Bergot, Mar 21 2018

A203242 Second elementary symmetric function of the first n terms of (1, 3, 7, 15, 31, ...).

Original entry on oeis.org

3, 31, 196, 1002, 4593, 19833, 82818, 339340, 1375639, 5543331, 22263216, 89249214, 357422541, 1430607325, 5724394990, 22901773824, 91616007699, 366482904615, 1465971463740, 5863969740370, 23456055121513, 93824589584001
Offset: 2

Views

Author

Clark Kimberling, Dec 31 2011

Keywords

Crossrefs

Cf. A203241.

Programs

  • Maple
    seq(4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3,n=2..100); # Robert Israel, Feb 01 2019
  • Mathematica
    f[k_] := 2^k - 1; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]  (* A203242 *)

Formula

Conjecture: (-103*n+258)*a(n) + (881*n-2116)*a(n-1) + 6*(-427*n+960)*a(n-2) + 4*(766*n-1545)*a(n-3) + 16*(-80*n+121)*a(n-4) = 0. - R. J. Mathar, Oct 15 2013
Empirical g.f.: -x^2*(4*x^2 + 2*x - 3)/((x - 1)^3*(2*x - 1)^2*(4*x - 1)). - Colin Barker, Aug 15 2014
From Robert Israel, Feb 01 2019: (Start)
Conjecture and empirical g.f. verified.
a(n) = 4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3. (End)
Showing 1-3 of 3 results.