Original entry on oeis.org
3, 49, 2028, 159201, 20342448, 3850078401, 1012487793408, 353293863908769, 157973407966483200, 88087149666575064369, 59928191584204259377152, 48860028872008706126041281
Offset: 1
-
[(&*[(n+1)*(n-j+1) +j^2: j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 23 2024
-
f[j_] := j; z = 12;
v[n_] := Product[Product[f[j]^2 - f[j] f[k] + f[k]^2,
{j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203312 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203513 *)
Table[Product[k^2 - k*(n+1) + (n+1)^2, {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Sep 07 2023 *)
-
from operator import mul
from functools import reduce
def v(n): return 1 if n==1 else reduce(mul, [reduce(mul, [j**2 - j*k + k**2 for j in range(1, k)]) for k in range(2, n + 1)])
print([v(n + 1)//v(n) for n in range(1, 13)]) # Indranil Ghosh, Jul 26 2017
-
def A203513(n): return product((n+1)*(n-j+1) +j^2 for j in range(1, n+1))
[A203513(n) for n in range(1,31)] # G. C. Greubel, Feb 23 2024
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A367543
a(n) = Product_{i=1..n, j=1..n} (i^2 - i*j + j^2).
Original entry on oeis.org
1, 36, 777924, 51190934086656, 32435802373365731229926400, 483207398728525904876601066508152707481600, 350969035472356907726779584093506665415605824531908346799718400
Offset: 1
-
Table[Product[Product[(i^2 - i*j + j^2), {i, 1, n}], {j, 1, n}], {n, 1, 10}]
-
from math import prod, factorial
def A367543(n): return (prod(i*(i-j)+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2 # Chai Wah Wu, Nov 22 2023
A203673
Vandermonde sequence using x^2 + xy + y^2 applied to (1,4,9,...,n^2).
Original entry on oeis.org
1, 21, 254163, 11213968422384, 6451450005117349260375984, 127857993263632065817610313129228311433216, 191199773886534869435599958788731398661833328276349525268803584
Offset: 1
-
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 + f[j] f[k] + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203673 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203674 *)
A203012
Vandermonde sequence using x^2 + xy + y^2 applied to (1,2,...,n).
Original entry on oeis.org
1, 7, 1729, 37616124, 135933424914924, 132432199651531695045312, 51437933151214684812682944045953088, 11056394929890243558409721156996503083526683082752, 1743892714865607005898689849291524734866677095031979100765833773056
Offset: 1
a(1)=1
a(2)=1^2+1*2+2^2=7
a(3)=(1^2+1*2+2^2)(1^3+1*3+3^2)(2^2+2*3+3^2)=1729.
-
f[j_] := j; z = 12;
v[n_] := Product[Product[f[j]^2 + f[j] f[k] + f[k]^2,
{j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203012 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203158 *)
A367517
a(n) = Product_{1 <= i < j <= n} (i^3 + j^3).
Original entry on oeis.org
1, 9, 8820, 3756261600, 1808353823416358400, 2039434890206782239939575808000, 9701283544768145414379038964290421034844160000, 318565016660642285381616434022976430918222575100233223503872000000
Offset: 1
-
Table[Product[Product[i^3 + j^3, {i,1,j-1}], {j,2,n}], {n,1,10}]
-
from math import prod
def A367517(n): return prod(i**3+j**3 for i in range(1,n) for j in range(i+1,n+1)) # Chai Wah Wu, Nov 22 2023
Showing 1-6 of 6 results.
Comments