cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A203674 v(n+1)/v(n), where v=A203673.

Original entry on oeis.org

21, 12103, 44121168, 575304812901, 19818489356999424, 1495407279639510367299, 217630534895386228374700032, 55724004016139059166321636355657, 23418841212903851059972098439618560000
Offset: 1

Views

Author

Clark Kimberling, Jan 04 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Programs

  • Mathematica
    f[j_] := j^2; z = 12;
    u[n_] := Product[f[j]^2 + f[j] f[k] + f[k]^2,
    {j, 1, k - 1}]
    v[n_] := Product[u[n], {k, 2, n}]
    Table[v[n], {n, 1, z}]          (* A203673 *)
    Table[v[n + 1]/v[n], {n, 1, z}] (* A203674 *)
    Table[Product[k^4 + k^2*(n+1)^2 + (n+1)^4, {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Nov 21 2023 *)

Formula

a(n) ~ 3^(3*n/2 + 1) * exp(sqrt(3)*Pi*(n+1)/2 - 4*n) * n^(4*n). - Vaclav Kotesovec, Nov 21 2023

A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.

Original entry on oeis.org

1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2004

Keywords

Comments

From Clark Kimberling, Jan 02 2013: (Start)
Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.
Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).
Guide to related sequences:
...
s(n).............. D(n)....... P(n)
n................. A000178.... (this)
n+1............... A000178.... A203470
n+2............... A000178.... A203472
n^2............... A202768.... A203475
2^(n-1)........... A203303.... A203477
2^n-1............. A203305.... A203479
n!................ A203306.... A203482
n(n+1)/2.......... A203309.... A203511
Fibonacci(n+1).... A203311.... A203518
prime(n).......... A080358.... A203521
odd prime(n)...... A203315.... A203524
nonprime(n)....... A203415.... A203527
composite(n)...... A203418.... A203530
2n-1.............. A108400.... A203516
n+floor(n/2)...... A203430
n+floor[(n+1)/2].. A203433
1/n............... A203421
1/(n+1)........... A203422
1/(2n)............ A203424
1/(2n+2).......... A203426
1/(3n)............ A203428
Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j
...
If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:
...
s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2
n ............... A203012..... A203312..... A203475
n+1 ............. A203581..... A203583..... A203585
2n-1 ............ A203514..... A203587..... A203589
n^2 ............. A203673..... A203675..... A203677
2^(n-1) ......... A203679..... A203681..... A203683
n! .............. A203685..... A203687..... A203689
n(n+1)/2 ........ A203691..... A203693..... A203695
Fibonacci(n) .... A203742..... A203744..... A203746
Fibonacci(n+1) .. A203697..... A203699..... A203701
prime(n) ........ A203703..... A203705..... A203707
floor(n/2) ...... A203748..... A203752..... A203773
floor((n+1)/2) .. A203759..... A203763..... A203766
For f(x,y)=x^4+y^4, see A203755 and A203770. (End)

Examples

			a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.
		

References

  • Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.
  • Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* Robert G. Wilson v, Jan 08 2013 *)
  • PARI
    A093883(n)=prod(i=1,n,(2*i-1)!/i!)  \\ M. F. Hasler, Nov 02 2012

Formula

Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - Vladeta Jovovic, May 27 2004
G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2019

Extensions

More terms from Vladeta Jovovic, May 27 2004

A203312 Vandermonde sequence using x^2 - xy + y^2 applied to (1,2,...,n).

Original entry on oeis.org

1, 3, 147, 298116, 47460365316, 965460013501733568, 3717096745012192786213464768, 3763515081241454304168766426610670649344, 1329626784930718063722475681347135527472012731205697536
Offset: 1

Author

Clark Kimberling, Jan 04 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    f[j_] := j; z = 12;
    v[n_] := Product[Product[f[j]^2 - f[j] f[k] + f[k]^2,
    {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]          (* A203312 *)
    Table[v[n + 1]/v[n], {n, 1, z}] (* A203513 *)
  • Python
    from operator import mul
    from functools import reduce
    def v(n): return 1 if n==1 else reduce(mul, [j**2 - j*k + k**2 for k in range(2, n + 1) for j in range(1, k)])
    print([v(n) for n in range(1, 11)]) # Indranil Ghosh, Jul 26 2017

Formula

a(n) ~ c * n^(n^2 - n - 2/3) / exp(3*n^2/2 - n*(n+1)*Pi/(2*sqrt(3)) - n), where c = Gamma(1/3) * 3^(1/12) * exp(Pi/(12*sqrt(3))) / (2^(4/3) * Pi^(4/3)) = 0.2945280196744096322469352538791946777977998766871923997662057483092872... - Vaclav Kotesovec, Nov 22 2023

A203012 Vandermonde sequence using x^2 + xy + y^2 applied to (1,2,...,n).

Original entry on oeis.org

1, 7, 1729, 37616124, 135933424914924, 132432199651531695045312, 51437933151214684812682944045953088, 11056394929890243558409721156996503083526683082752, 1743892714865607005898689849291524734866677095031979100765833773056
Offset: 1

Author

Clark Kimberling, Jan 04 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Examples

			a(1)=1
a(2)=1^2+1*2+2^2=7
a(3)=(1^2+1*2+2^2)(1^3+1*3+3^2)(2^2+2*3+3^2)=1729.
		

Crossrefs

Programs

  • Mathematica
    f[j_] := j; z = 12;
    v[n_] := Product[Product[f[j]^2 + f[j] f[k] + f[k]^2,
    {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]          (* A203012 *)
    Table[v[n + 1]/v[n], {n, 1, z}] (* A203158 *)

Formula

a(n) ~ c * n^(n^2 - n - 5/6) * 3^(n*(3*n+1)/4) / exp(3*n^2/2 - n - n*(n+1)*Pi / (4*sqrt(3))), where c = sqrt(Gamma(1/3)) * 3^(5/24) * exp(Pi/(24*sqrt(3))) / (2^(7/6) * Pi^(7/6)) = 0.26001211479205772659823692637002123572622409280442625312217301129630097... - Vaclav Kotesovec, Nov 22 2023

A367550 a(n) = Product_{i=1..n, j=1..n} (i^4 + i^2*j^2 + j^4).

Original entry on oeis.org

3, 63504, 2260442279270448, 3379470372507391964272022793486336, 2097229364987262298214192667129919538956418868293588090880000
Offset: 1

Author

Vaclav Kotesovec, Nov 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Product[i^4 + i^2*j^2 + j^4, {i, 1, n}], {j, 1, n}], {n, 1, 10}]
  • Python
    from math import prod, factorial
    def A367550(n): return (prod((i2:=i**2)*(i2+(j2:=j**2))+j2**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2*3**n # Chai Wah Wu, Nov 22 2023

Formula

a(n) = A367542(n) * A367543(n).
a(n) ~ Gamma(1/3)^3 * 3^(3*n*(n+1)/2 + 7/12) * n^(4*n^2 - 1) / (8*Pi^3 * exp(6*n^2 - (6*n*(n+1) + 1)*Pi/(4*sqrt(3)))).

A203675 Vandermonde sequence using x^2 - xy + y^2 applied to (1,4,9,...,n^2).

Original entry on oeis.org

1, 13, 57889, 560058939856, 42130404012097952586256, 65111467563626175389271488157658681344, 4528499444374253250530486688998183592108605307719698157568
Offset: 1

Author

Clark Kimberling, Jan 04 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    f[j_] := j^2; z = 12;
    u[n_] := Product[f[j]^2 - f[j] f[k] + f[k]^2, {j, 1, k - 1}]
    v[n_] := Product[u[n], {k, 2, n}]
    Table[v[n], {n, 1, z}]          (* A203675 *)
    Table[v[n + 1]/v[n], {n, 1, z}] (* A203676 *)

Formula

a(n) ~ c * (2 + sqrt(3))^(sqrt(3)*n*(n+1)/2) * n^(2*n^2 - 2*n - 3/2) / exp(3*n^2 - Pi*n*(n+1)/4 - 2*n), where c = 0.07463795295314976973866568785704370572893158254239607676544741150586459722... - Vaclav Kotesovec, Nov 25 2023
Showing 1-6 of 6 results.