Original entry on oeis.org
21, 12103, 44121168, 575304812901, 19818489356999424, 1495407279639510367299, 217630534895386228374700032, 55724004016139059166321636355657, 23418841212903851059972098439618560000
Offset: 1
-
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 + f[j] f[k] + f[k]^2,
{j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203673 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203674 *)
Table[Product[k^4 + k^2*(n+1)^2 + (n+1)^4, {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Nov 21 2023 *)
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A203312
Vandermonde sequence using x^2 - xy + y^2 applied to (1,2,...,n).
Original entry on oeis.org
1, 3, 147, 298116, 47460365316, 965460013501733568, 3717096745012192786213464768, 3763515081241454304168766426610670649344, 1329626784930718063722475681347135527472012731205697536
Offset: 1
-
f[j_] := j; z = 12;
v[n_] := Product[Product[f[j]^2 - f[j] f[k] + f[k]^2,
{j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203312 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203513 *)
-
from operator import mul
from functools import reduce
def v(n): return 1 if n==1 else reduce(mul, [j**2 - j*k + k**2 for k in range(2, n + 1) for j in range(1, k)])
print([v(n) for n in range(1, 11)]) # Indranil Ghosh, Jul 26 2017
A203012
Vandermonde sequence using x^2 + xy + y^2 applied to (1,2,...,n).
Original entry on oeis.org
1, 7, 1729, 37616124, 135933424914924, 132432199651531695045312, 51437933151214684812682944045953088, 11056394929890243558409721156996503083526683082752, 1743892714865607005898689849291524734866677095031979100765833773056
Offset: 1
a(1)=1
a(2)=1^2+1*2+2^2=7
a(3)=(1^2+1*2+2^2)(1^3+1*3+3^2)(2^2+2*3+3^2)=1729.
-
f[j_] := j; z = 12;
v[n_] := Product[Product[f[j]^2 + f[j] f[k] + f[k]^2,
{j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203012 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203158 *)
A367550
a(n) = Product_{i=1..n, j=1..n} (i^4 + i^2*j^2 + j^4).
Original entry on oeis.org
3, 63504, 2260442279270448, 3379470372507391964272022793486336, 2097229364987262298214192667129919538956418868293588090880000
Offset: 1
-
Table[Product[Product[i^4 + i^2*j^2 + j^4, {i, 1, n}], {j, 1, n}], {n, 1, 10}]
-
from math import prod, factorial
def A367550(n): return (prod((i2:=i**2)*(i2+(j2:=j**2))+j2**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2*3**n # Chai Wah Wu, Nov 22 2023
A203675
Vandermonde sequence using x^2 - xy + y^2 applied to (1,4,9,...,n^2).
Original entry on oeis.org
1, 13, 57889, 560058939856, 42130404012097952586256, 65111467563626175389271488157658681344, 4528499444374253250530486688998183592108605307719698157568
Offset: 1
-
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 - f[j] f[k] + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203675 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203676 *)
Showing 1-6 of 6 results.
Comments