Original entry on oeis.org
7, 247, 21756, 3613701, 974243088, 388409565699, 214946329538304, 157727064375306153, 148245464311769260800, 173696139110375108022159, 248243987235370949531025408, 425095516929076538387157860013
Offset: 1
-
f[j_] := j; z = 12;
v[n_] := Product[Product[f[j]^2 + f[j] f[k] + f[k]^2,
{j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203012 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203158 *)
Table[Product[k^2 + k*(n+1) + (n+1)^2, {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Sep 07 2023 *)
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A367542
a(n) = Product_{i=1..n, j=1..n} (i^2 + i*j + j^2).
Original entry on oeis.org
3, 1764, 2905736652, 66016970246853190656, 64657853715047202043531429875379200, 6627957368676918780503749855130249245999452089509478400
Offset: 1
-
Table[Product[Product[(i^2 + i*j + j^2), {i, 1, n}], {j, 1, n}], {n, 1, 10}]
-
from math import prod, factorial
def A367542(n): return (prod(i*(i+j)+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2*3**n # Chai Wah Wu, Nov 22 2023
A203312
Vandermonde sequence using x^2 - xy + y^2 applied to (1,2,...,n).
Original entry on oeis.org
1, 3, 147, 298116, 47460365316, 965460013501733568, 3717096745012192786213464768, 3763515081241454304168766426610670649344, 1329626784930718063722475681347135527472012731205697536
Offset: 1
-
f[j_] := j; z = 12;
v[n_] := Product[Product[f[j]^2 - f[j] f[k] + f[k]^2,
{j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203312 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203513 *)
-
from operator import mul
from functools import reduce
def v(n): return 1 if n==1 else reduce(mul, [j**2 - j*k + k**2 for k in range(2, n + 1) for j in range(1, k)])
print([v(n) for n in range(1, 11)]) # Indranil Ghosh, Jul 26 2017
A203673
Vandermonde sequence using x^2 + xy + y^2 applied to (1,4,9,...,n^2).
Original entry on oeis.org
1, 21, 254163, 11213968422384, 6451450005117349260375984, 127857993263632065817610313129228311433216, 191199773886534869435599958788731398661833328276349525268803584
Offset: 1
-
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 + f[j] f[k] + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203673 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203674 *)
Showing 1-5 of 5 results.
Comments