cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203648 a(n) = (1/4) * period of repeating sequence {S(j) mod 2n}, where S(j) is the sum of the first j squares.

Original entry on oeis.org

1, 2, 9, 4, 5, 18, 7, 8, 27, 10, 11, 36, 13, 14, 45, 16, 17, 54, 19, 20, 63, 22, 23, 72, 25, 26, 81, 28, 29, 90, 31, 32, 99, 34, 35, 108, 37, 38, 117, 40, 41, 126, 43, 44, 135, 46, 47, 144, 49, 50, 153, 52, 53, 162, 55, 56, 171, 58, 59, 180, 61, 62, 189, 64, 65
Offset: 1

Views

Author

Gary Detlefs, Jan 04 2012

Keywords

Comments

This sequence lists the periods of the sum of the first n squares mod 2*n. In most cases, (Sum_{k=1..n} k^(2*j)) mod 2*n will produce the same sequence. The repeating sequences appear to always end in 2 zeros.
(Sum_{k=1..n} k^j) mod 2 has period 4 repeating [1,1,0,0] for any j.
It appears that a(n) is the number of n-colorings of the trefoil knot. - Tsuyoshi Miezaki, May 01 2022

Examples

			G.f. = x + 2*x^2 + 9*x^3 + 4*x^4 + 5*x^5 + 18*x^6 + 7*x^7 + 8*x^8 + 27*x^9 + ...
(Sum_{k=1..n} k^2) mod 4 has period 8 repeating [1,1,2,2,3,3,0,0] so a(2) = 2.
		

Crossrefs

Cf. A008585 (3*n), A109007.

Programs

  • Magma
    [n*(1+2*Floor(((n+2) mod 3)/2)): n in [1..60]]; // Vincenzo Librandi, Mar 19 2012
    
  • Maple
    seq(n*(1+floor(((n+2) mod 3)/2))), n= 1..57);
  • Mathematica
    CoefficientList[Series[(1+2*x+9*x^2+2*x^3+x^4)/((1-x)^2*(1+x+x^2)^2),{x,0,60}],x] (* Vincenzo Librandi, Mar 19 2012 *)
    Table[n (1 + 2 Floor[Mod[n + 2, 3]/2]), {n, 57}] (* Michael De Vlieger, Jan 14 2017 *)
    LinearRecurrence[{0,0,2,0,0,-1},{1,2,9,4,5,18},70] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    {a(n) = if( n%3, n, 3*n)}; /* Michael Somos, Jan 18 2017 */

Formula

a(n) = 3*n if n mod 3 = 0, otherwise n.
a(n) = n*(1 + 2*floor(((n+2) mod 3)/2)).
From Bruno Berselli, Jan 04 2012: (Start)
G.f.: x*(1 + 2*x + 9*x^2 + 2*x^3 + x^4)/((1-x)^2*(1 + x + x^2)^2).
a(n) = 2*n + 2*n*((-1)^(-2*n/3) + (-1)^(2*n/3)-1/2)/3.
a(n) = -a(-n) = 2*a(n-3) - a(n-6). (End)
a(n) = numerator(3n/((3 + 2*(-1 + n))*(1 + n))). - Andres Cicuttin, Jan 12 2017
a(n) is multiplicative with a(p^e) = p^(e+1) if p = 3, a(p^e) = p^e otherwise. - Michael Somos, Jan 18 2017
a(n) = n*(5 + 4*cos((2*Pi*n)/3)) / 3. - Colin Barker, Mar 06 2017
From Amiram Eldar, Dec 27 2022: (Start)
Dirichlet g.f.: zeta(s-1)*(3^(-s)*(6 + 3^s)).
Sum_{k=1..n} a(k) ~ (5/6) * n^2. (End)
a(n) = n*A109007(n). - Lechoslaw Ratajczak, Aug 16 2023
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*log(2)/9. - Amiram Eldar, Aug 21 2023