cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204542 Numbers that are congruent to {1, 4, 11, 14} mod 15.

Original entry on oeis.org

1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44, 46, 49, 56, 59, 61, 64, 71, 74, 76, 79, 86, 89, 91, 94, 101, 104, 106, 109, 116, 119, 121, 124, 131, 134, 136, 139, 146, 149, 151, 154, 161, 164, 166, 169, 176, 179, 181, 184, 191, 194, 196, 199, 206, 209, 211, 214, 221, 224
Offset: 1

Views

Author

Michael Somos, Jan 16 2012

Keywords

Comments

The exponents in the q-series for A204220 are the squares of the numbers of this sequence.
The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4, etc. - Bruno Berselli, Nov 28 2012

Examples

			G.f. = x + 4*x^2 + 11*x^3 + 14*x^4 + 16*x^5 + 19*x^6 + 26*x^7 + 29*x^8 + 31*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 15 in [1, 4, 11, 14]]; // Wesley Ivan Hurt, Jun 07 2016
  • Maple
    A204542:=n->floor(15 * n / 4) - ((n + 1) mod 4): seq(A204542(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    Select[Range[250], MemberQ[{1,4,11,14}, Mod[#,15]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {1,4,11,14,16}, 60] (* Harvey P. Dale, Apr 15 2015 *)
  • PARI
    {a(n) = (n * 15) \ 4 - (n + 1) % 4};
    
  • PARI
    {a(n) = if( n<1, -a(1-n), polcoeff( x * (1 + 3*x + 7*x^2 + 3*x^3 + x^4) / ((1-x) * (1-x^4)) + x * O(x^n), n))};
    

Formula

G.f.: x * (1 + 3*x + 7*x^2 + 3*x^3 + x^4) / ((1-x) * (1-x^4)).
a(n) = -a(1-n), a(n) = 15 + a(n-4), a(n) = floor(15 * n / 4) - ((n + 1) mod 4) for all n in Z.
a(n) = (30*n+10*i^(n*(n+1))-3*(-1)^n+1)/8 -2, where i=sqrt(-1). - Bruno Berselli, Nov 28 2012
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 07 2016
E.g.f.: (4 - 5*(sin(x) - cos(x)) + 3*(5*x - 2)*sinh(x) + 3*(5*x - 3)*cosh(x))/4. - Ilya Gutkovskiy, Jun 07 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2*(sqrt(5)+5))*Pi/15. - Amiram Eldar, Dec 30 2021