A204542 Numbers that are congruent to {1, 4, 11, 14} mod 15.
1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44, 46, 49, 56, 59, 61, 64, 71, 74, 76, 79, 86, 89, 91, 94, 101, 104, 106, 109, 116, 119, 121, 124, 131, 134, 136, 139, 146, 149, 151, 154, 161, 164, 166, 169, 176, 179, 181, 184, 191, 194, 196, 199, 206, 209, 211, 214, 221, 224
Offset: 1
Examples
G.f. = x + 4*x^2 + 11*x^3 + 14*x^4 + 16*x^5 + 19*x^6 + 26*x^7 + 29*x^8 + 31*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- John Greene and James A. Sellers, Extending recent parity results of Nyirenda and Mugwangwavari for partitions with initial repetitions, Integers (2025), Vol. 25, Art. No. A32. See p. 8.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 15 in [1, 4, 11, 14]]; // Wesley Ivan Hurt, Jun 07 2016
-
Maple
A204542:=n->floor(15 * n / 4) - ((n + 1) mod 4): seq(A204542(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
-
Mathematica
Select[Range[250], MemberQ[{1,4,11,14}, Mod[#,15]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {1,4,11,14,16}, 60] (* Harvey P. Dale, Apr 15 2015 *)
-
PARI
{a(n) = (n * 15) \ 4 - (n + 1) % 4};
-
PARI
{a(n) = if( n<1, -a(1-n), polcoeff( x * (1 + 3*x + 7*x^2 + 3*x^3 + x^4) / ((1-x) * (1-x^4)) + x * O(x^n), n))};
Formula
G.f.: x * (1 + 3*x + 7*x^2 + 3*x^3 + x^4) / ((1-x) * (1-x^4)).
a(n) = -a(1-n), a(n) = 15 + a(n-4), a(n) = floor(15 * n / 4) - ((n + 1) mod 4) for all n in Z.
a(n) = (30*n+10*i^(n*(n+1))-3*(-1)^n+1)/8 -2, where i=sqrt(-1). - Bruno Berselli, Nov 28 2012
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 07 2016
E.g.f.: (4 - 5*(sin(x) - cos(x)) + 3*(5*x - 2)*sinh(x) + 3*(5*x - 3)*cosh(x))/4. - Ilya Gutkovskiy, Jun 07 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2*(sqrt(5)+5))*Pi/15. - Amiram Eldar, Dec 30 2021
Comments