cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A204221 Integers of the form (N^2 - 1) / 15.

Original entry on oeis.org

0, 1, 8, 13, 17, 24, 45, 56, 64, 77, 112, 129, 141, 160, 209, 232, 248, 273, 336, 365, 385, 416, 493, 528, 552, 589, 680, 721, 749, 792, 897, 944, 976, 1025, 1144, 1197, 1233, 1288, 1421, 1480, 1520, 1581, 1728, 1793, 1837, 1904, 2065, 2136, 2184, 2257, 2432
Offset: 0

Views

Author

Michael Somos, Jan 13 2012

Keywords

Comments

Equivalently, numbers in increasing order of the form m(15m+2) or m(15m+8)+1, where m = 0,-1,1,-2,2,-3,3,... [Bruno Berselli, Nov 27 2012]
The sequence terms occur as exponents in the expansion of the identity Product_{n >= 0} (1 - x^(20*n+1))*(1 - x^(20*n+19))*(1 - x^(20*n+8))*(1 - x^(20*n+12))*(1 - x^(20*n+9))*(1 - x^(20*n+11))*(1 - x^(10*n+10)) = Sum_{n >= 0} x^(n^2+n)*Product_{k >= 2*n+1} 1 - x^k = 1 - x - x^8 + x^13 + x^17 - - + + .... See Andrews et al., p. 591, Exercise 6(c). - Peter Bala, Feb 22 2021.

References

  • George E. Andrews, Richard Askey, and Ranjan Roy, Special Functions, Cambridge University Press, 1999.

Crossrefs

Cf. A204220, A204542 (square roots of 15*a(n)+1), A379210.
Cf. similar sequences listed in A219257.

Programs

  • Magma
    [n: n in [0..2500] | IsSquare(15*n+1)]; // Bruno Berselli, Nov 23 2012
    
  • Magma
    /* By comment: */ s:=[0, 1] cat &cat[[t*(15*t+2), t*(15*t+8)+1]: t in [-n,n], n in [1..13]]; Sort(s); // Bruno Berselli, Nov 27 2012
  • Maple
    A204221 := proc(q) local n;
    for n from 0 to q do
     if type(sqrt(15*n+1), integer) then print(n);
    fi; od; end:
    A204221(2500); # Peter Bala, Dec 18 2024
  • Mathematica
    Select[Range[0, 2500], IntegerQ[Sqrt[15 # + 1]] &] (* Bruno Berselli, Nov 23 2012 *)
  • PARI
    {a(n) = (15*n^2 + n*[8, 2, 28, 22][n%4 + 1] + 12) \ 16}
    

Formula

|A204220(n)| is the characteristic function of the numbers in this sequence.
a(-1 - n) = a(n).
G.f. x*(x^2-x+1)*(x^4+8*x^3+12*x^2+8*x+1) / ( (1+x)^2*(1+x^2)^2*(1-x)^3 ). - R. J. Mathar, Jan 28 2012
a(n) = (30*n-10*i^(n(n-1))+3*(-1)^n+7)*(30*n-10*i^(n(n-1))+3*(-1)^n+23)/960, where i=sqrt(-1). - Bruno Berselli, Nov 28 2012
Sum_{n>=1} 1/a(n) = 15/4 - cot(2*Pi/15)*Pi/2 - Pi/(2*sqrt(3)) + sqrt(1+2/sqrt(5))*Pi/2. - Amiram Eldar, Mar 15 2022
From Peter Bala, Dec 17 2024: (Start)
a(n) is quasi-polynomial in n: for n >= 0,
a(4*n+1) = 15*n^2 + 8*n + 1; a(4*n+2) = 15*n^2 + 22*n + 8;
a(4*n+3) = 15*n^2 + 28*n + 13; a(4*n+4) = 15*n^2 + 32*n + 17.
For 1 <= k <= 4, a(4*n+k) = (N_k(n)^2 - 1)/15, where N_1(n) = 15*n + 4, N_2(n) = 15*n + 11, N_3(n) = 15*n + 14 and N_4(n) = 15*n + 16. (End)

A379210 List of integers of the form (N^2 - 4)/15.

Original entry on oeis.org

0, 3, 4, 11, 19, 32, 35, 52, 68, 91, 96, 123, 147, 180, 187, 224, 256, 299, 308, 355, 395, 448, 459, 516, 564, 627, 640, 707, 763, 836, 851, 928, 992, 1075, 1092, 1179, 1251, 1344, 1363, 1460, 1540, 1643, 1664, 1771, 1859, 1972, 1995, 2112, 2208, 2331, 2356, 2483
Offset: 1

Views

Author

Peter Bala, Dec 18 2024

Keywords

Comments

Compare with A204221.
The sequence terms occur as exponents in the expansion of Sum_{n >= 1} x^(n*(n-1)) * Product_{k >= 2*n} 1 - x^k = 1 - x^3 - x^4 + x^11 + x^19 - x^32 - x^35 + + - - ....
|A379212(n)| is the characteristic function of the numbers in this sequence.

Crossrefs

Cf. A204220, A204221, A204542, A379211 (square roots of 15*a(n) + 4), A379212.

Programs

  • Maple
    A379210 := proc(q) local n;
    for n from 0 to q do
     if type(sqrt(15*n+4), integer) then print(n);
    fi; od; end:
    A379210(2500);
  • Mathematica
    LinearRecurrence[{1,0,0,2,-2,0,0,-1,1},{0, 3, 4, 11, 19, 32, 35, 52, 68},52] (* James C. McMahon, Dec 24 2024 *)

Formula

a(n) = (1/32)*(30*n^2 - 30*n + 1) + (-1)^(n)*(5/32)*(2*n - 1) - (-1)^(n*(n+1)/2)*(1/16)*(6*n - 3 + (-1)^n).
a(n) is quasi-periodic in n: for n >= 0,
a(4*n+1) = 15*n^2 - 26*n + 11; a(4*n+2) = 15*n^2 - 16*n + 4;
a(4*n+3) = 15*n^2 - 14*n + 3; a(4*n+4) = 15*n^2 - 4*n.
a(1-n) = a(n).
15*a(n) + 4 = A379211(n)^2.
G.f: x*(3*x^6 + x^5 + 7*x^4 + 8*x^3 + 7*x^2 + x + 3)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2).
E.g.f.: ((15*x^2 + 35*x - 2)*cosh(x) + 2*(cos(x) + 3*x*cos(x) + 2*sin(x) - 3*x*sin(x)) + (15*x^2 + 25*x + 3)*sinh(x))/16. - Stefano Spezia, Dec 23 2024

A379211 List of positive integers that are congruent to {2, 7, 8, 13} mod 15.

Original entry on oeis.org

2, 7, 8, 13, 17, 22, 23, 28, 32, 37, 38, 43, 47, 52, 53, 58, 62, 67, 68, 73, 77, 82, 83, 88, 92, 97, 98, 103, 107, 112, 113, 118, 122, 127, 128, 133, 137, 142, 143, 148, 152, 157, 158, 163, 167, 172, 173, 178, 182, 187, 188, 193, 197, 202, 203, 208, 212, 217, 218, 223, 227, 232, 233, 238, 242, 247, 248, 253, 257, 262
Offset: 1

Views

Author

Peter Bala, Dec 18 2024

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
          `if`(n < 5, [0, 2, 7, 8, 13][n+1], 15 + a(n-4))
         end:
    seq(a(n), n = 1..70);
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {2, 7, 8, 13, 17}, 70] (* Amiram Eldar, Dec 24 2024 *)

Formula

a(n) = 15 + a(n-4); a(n) = - a(1-n).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 6.
G.f.: x*(x^2 + 3*x + 1)*(2*x^2 - x + 2)/((1 + x)*(1 - x)^2*(1 + x^2)).
a(n)^2 = 15 * A379210(n) + 4.
For n >= 2, a(n-1) + a(n+1) = A072703(n).
It appears that a(n) + a(n+1) = (3/2) * A315211(n).
E.g.f.: (8 - 3*cos(x) + 5*(3*x - 1)*cosh(x) + 3*sin(x) + 5*(3*x - 2)*sinh(x))/4. - Stefano Spezia, Dec 23 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(5*sqrt(3)*phi), where phi is the golden ratio (A001622). - Amiram Eldar, Dec 24 2024

A257645 a(n) = 15*n + 14.

Original entry on oeis.org

14, 29, 44, 59, 74, 89, 104, 119, 134, 149, 164, 179, 194, 209, 224, 239, 254, 269, 284, 299, 314, 329, 344, 359, 374, 389, 404, 419, 434, 449, 464, 479, 494, 509, 524, 539, 554, 569, 584, 599, 614, 629, 644, 659, 674, 689, 704, 719, 734, 749, 764, 779
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 05 2015

Keywords

Comments

A123159(a(n)) <= 4.
This is not a subsequence of A047725 (for example, 239 is missing in A047725). - Bruno Berselli, Nov 06 2015
Equivalently, intersection of A016897 and A016789. - Bruno Berselli, Jan 24 2018

Crossrefs

Programs

  • Magma
    [15*n+14: n in [0..51]];
    
  • Maple
    seq(15*n+14, n=0..51);
  • Mathematica
    15 Range[50] - 1
  • PARI
    for(n=0, 51, print1(15*n+14, ", "));

Formula

G.f.: (14 + x)/(1 - x)^2.
a(n) = A008597(n+1) - 1. - Omar E. Pol, Nov 05 2015
a(n) = A016897(3n+2) = A175887(2n+2) = A204542(4n+4). - Bruno Berselli, Nov 06 2015
E.g.f.: (15*x + 14)*exp(x). - G. C. Greubel, Apr 23 2018
a(n) = 2*a(n-1)-a(n-2). - Wesley Ivan Hurt, Dec 27 2023
Showing 1-4 of 4 results.