A205801
Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).
Original entry on oeis.org
1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022
A205802
Expansion of e.g.f. 1/( Sum_{n>=0} (-x)^(n^2) / (n^2)! ).
Original entry on oeis.org
1, 1, 2, 6, 23, 110, 630, 4200, 31990, 274051, 2608220, 27304530, 311820630, 3857738170, 51397726380, 733698365400, 11171708347799, 180738402744866, 3096027531044102, 55980949167688884, 1065496642477438890, 21293801805033731190, 445818117237227995260
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 23*x^4/4! + 110*x^5/5! + ...
where
1/A(x) = 1 - x + x^4/4! - x^9/9! + x^16/16! - x^25/25! + x^36/36! + ...
-
{a(n)=n!*polcoeff(sum(m=0, sqrtint(n+1), (-1)^m*x^(m^2)/(m^2)!+x*O(x^n))^(-1), n)}
for(n=0,25,print1(a(n),", "))
A329256
Expansion of e.g.f. exp(Sum_{k>=1} x^(k^2) / (k^2)!).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 36, 106, 443, 1796, 6161, 23816, 122266, 643644, 2934296, 14002237, 83835433, 532282819, 3005258539, 17039094646, 115611682810, 848428608644, 5682350940168, 37297365940462, 281594230420802, 2323660209441962, 17929392395804072
Offset: 0
-
nmax = 27; CoefficientList[Series[Exp[Sum[x^(k^2)/(k^2)!, {k, 1, Floor[nmax^(1/2)] + 1}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 27}]
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, sqrtint(N), x^k^2/(k^2)!)))) \\ Seiichi Manyama, Apr 29 2022
-
a(n) = if(n==0, 1, sum(k=1, sqrtint(n), binomial(n-1, k^2-1)*a(n-k^2))); \\ Seiichi Manyama, Apr 29 2022
A193375
E.g.f.: A(x) = exp( Sum_{n>=1} x^(n*(n+1)/2) ).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 1201, 7771, 30577, 514585, 8089921, 63701551, 832599241, 14055894997, 137066892145, 3084240161731, 70859008063201, 849408115312561, 15997591979202817, 358582896987674455, 6017079190150763641, 209473179919282488301
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 7*x^3/3! + 25*x^4/4! + 61*x^5/5! +...
where
log(A(x)) = x + x^3 + x^6 + x^10 + x^15 + x^21 +...
A320898
Expansion of e.g.f. exp(theta_3(x) - 1), where theta_3() is the Jacobi theta function.
Original entry on oeis.org
1, 2, 4, 8, 64, 512, 2944, 13568, 134656, 2371328, 29676544, 268141568, 2560761856, 53154824192, 991944441856, 13085180592128, 187309143556096, 4400237083492352, 105779411022905344, 1939709049732595712, 37680665654471950336, 882429584512554893312, 23052947736212625424384
Offset: 0
-
seq(coeff(series(factorial(n)*(exp(2*add(x^(k^2),k=1..n))),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 23 2018
-
nmax = 22; CoefficientList[Series[Exp[EllipticTheta[3, 0, x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[SquaresR[1, k] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
Showing 1-5 of 5 results.
Comments