cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A205801 Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of permutations of [n] whose cycle lengths are squares. - Alois P. Heinz, May 12 2016

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
           a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 12 2016
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

The e.g.f. A(x)=1+a(1)x+a(2)x^2/2!+... is equal to the power series expansion of the product of (1-x^n)^{-lambda(n)/n} (n=1,2,...) where lambda(n) is the Liouville function A008836 (follows easily from the Lambert series of lambda(n) - see e. g., the Wikipedia link). - Mamuka Jibladze, Jan 12 2014
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor(sqrt(n))} a(n-k^2)/(n-k^2)!. - Seiichi Manyama, Apr 29 2022

A205800 Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) ).

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 21841, 547345, 4541041, 23292721, 169658281, 7550279881, 95230199065, 692107448761, 25431412450081, 563675083228321, 9791797014753121, 112525775579561185, 3370231071632996281, 65798618669268652441, 1345746844683430533961
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 25*x^4/4! + 121*x^5/5! +...
where
log(A(x)) = x + x^4 + x^9 + x^16 + x^25 + x^36 + x^49 + x^64 +...
		

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*(exp(add(x^(k^2),k=1..n))),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Sum[x^n^2,{n,nn}]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 01 2020 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)+x*O(x^n))), n)}
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), k^2*a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022

Formula

E.g.f.: exp((theta_3(x) - 1)/2), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Oct 23 2018
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor(sqrt(n))} k^2 * a(n-k^2)/(n-k^2)!. - Seiichi Manyama, Apr 29 2022

A205799 E.g.f.: exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2)! ).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 32, 113, 365, 1373, 6072, 25279, 115633, 606321, 3051413, 16344785, 98402881, 576283953, 3523586227, 23840955908, 158428389359, 1085566420290, 8128568533790, 60203101002122, 455911264482697, 3734114950288571, 30413492882578846
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of set partitions of [n] whose block lengths are triangular numbers. - Alois P. Heinz, Jun 10 2018

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 11*x^5/5! + 32*x^6/6! +...
where
log(A(x)) = x + x^3/3! + x^6/6! + x^10/10! + x^15/15! + x^21/21! +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          issqr(8*j+1), a(n-j)*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 10 2018
  • Mathematica
    m = 30;
    CoefficientList[Exp[Sum[x^(n(n+1)/2)/(n(n+1)/2)!, {n, 1, m}]] + O[x]^m, x]* Range[0, m-1]! (* Jean-François Alcover, Mar 05 2021 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(2*n+1), x^(m*(m+1)/2)/(m*(m+1)/2)!+x*O(x^n))), n)}

A205804 E.g.f.: -log( Sum_{n>=0} (-x)^(n^2) / (n^2)! ).

Original entry on oeis.org

1, 1, 2, 5, 19, 90, 510, 3395, 25831, 221140, 2104310, 22027170, 251540795, 3111928820, 41460769350, 591847005749, 9011786683883, 145794610986004, 2497443795363566, 45157627509568965, 859494143391347310, 17176870199851102510, 359623890969235361700
Offset: 1

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 19*x^5/5! + 90*x^6/6! +...
where
exp(-A(x)) = 1 - x + x^4/4! - x^9/9! + x^16/16! - x^25/25! + x^36/36! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = n!*polcoeff(-log(sum(m=0, sqrtint(n+1), (-x)^(m^2)/(m^2)!+x*O(x^n))), n)}
    for(n=1,25,print1(a(n),", "))

A329256 Expansion of e.g.f. exp(Sum_{k>=1} x^(k^2) / (k^2)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 106, 443, 1796, 6161, 23816, 122266, 643644, 2934296, 14002237, 83835433, 532282819, 3005258539, 17039094646, 115611682810, 848428608644, 5682350940168, 37297365940462, 281594230420802, 2323660209441962, 17929392395804072
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[Sum[x^(k^2)/(k^2)!, {k, 1, Floor[nmax^(1/2)] + 1}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 27}]
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, sqrtint(N), x^k^2/(k^2)!)))) \\ Seiichi Manyama, Apr 29 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, sqrtint(n), binomial(n-1, k^2-1)*a(n-k^2))); \\ Seiichi Manyama, Apr 29 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A010052(k) * a(n-k).

A353180 Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^(k^2) / (k^2)!).

Original entry on oeis.org

1, 1, 2, 6, 25, 130, 810, 5880, 48790, 455491, 4725020, 53915730, 671141130, 9050528630, 131437406100, 2045160117000, 33944105995801, 598591246152934, 11176863039391538, 220287874849834596, 4570225746232479690, 99557506547622369750, 2272028399094852806100
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k^2] * a[n - k^2], {k, 1, Floor@Sqrt[n]}]; Array[a, 23, 0] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, sqrtint(N), x^k^2/(k^2)!))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, sqrtint(i), binomial(i, j^2)*v[i-j^2+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..floor(sqrt(n))} binomial(n,k^2) * a(n-k^2).
Showing 1-6 of 6 results.