A205801
Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).
Original entry on oeis.org
1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022
A205800
Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) ).
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 21841, 547345, 4541041, 23292721, 169658281, 7550279881, 95230199065, 692107448761, 25431412450081, 563675083228321, 9791797014753121, 112525775579561185, 3370231071632996281, 65798618669268652441, 1345746844683430533961
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 25*x^4/4! + 121*x^5/5! +...
where
log(A(x)) = x + x^4 + x^9 + x^16 + x^25 + x^36 + x^49 + x^64 +...
-
seq(coeff(series(factorial(n)*(exp(add(x^(k^2),k=1..n))),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 23 2018
-
With[{nn=30},CoefficientList[Series[Exp[Sum[x^n^2,{n,nn}]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 01 2020 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)+x*O(x^n))), n)}
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), k^2*a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022
A205799
E.g.f.: exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2)! ).
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 32, 113, 365, 1373, 6072, 25279, 115633, 606321, 3051413, 16344785, 98402881, 576283953, 3523586227, 23840955908, 158428389359, 1085566420290, 8128568533790, 60203101002122, 455911264482697, 3734114950288571, 30413492882578846
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 11*x^5/5! + 32*x^6/6! +...
where
log(A(x)) = x + x^3/3! + x^6/6! + x^10/10! + x^15/15! + x^21/21! +...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
issqr(8*j+1), a(n-j)*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 10 2018
-
m = 30;
CoefficientList[Exp[Sum[x^(n(n+1)/2)/(n(n+1)/2)!, {n, 1, m}]] + O[x]^m, x]* Range[0, m-1]! (* Jean-François Alcover, Mar 05 2021 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(2*n+1), x^(m*(m+1)/2)/(m*(m+1)/2)!+x*O(x^n))), n)}
A205804
E.g.f.: -log( Sum_{n>=0} (-x)^(n^2) / (n^2)! ).
Original entry on oeis.org
1, 1, 2, 5, 19, 90, 510, 3395, 25831, 221140, 2104310, 22027170, 251540795, 3111928820, 41460769350, 591847005749, 9011786683883, 145794610986004, 2497443795363566, 45157627509568965, 859494143391347310, 17176870199851102510, 359623890969235361700
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 19*x^5/5! + 90*x^6/6! +...
where
exp(-A(x)) = 1 - x + x^4/4! - x^9/9! + x^16/16! - x^25/25! + x^36/36! +...
-
{a(n) = n!*polcoeff(-log(sum(m=0, sqrtint(n+1), (-x)^(m^2)/(m^2)!+x*O(x^n))), n)}
for(n=1,25,print1(a(n),", "))
A329256
Expansion of e.g.f. exp(Sum_{k>=1} x^(k^2) / (k^2)!).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 36, 106, 443, 1796, 6161, 23816, 122266, 643644, 2934296, 14002237, 83835433, 532282819, 3005258539, 17039094646, 115611682810, 848428608644, 5682350940168, 37297365940462, 281594230420802, 2323660209441962, 17929392395804072
Offset: 0
-
nmax = 27; CoefficientList[Series[Exp[Sum[x^(k^2)/(k^2)!, {k, 1, Floor[nmax^(1/2)] + 1}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 27}]
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, sqrtint(N), x^k^2/(k^2)!)))) \\ Seiichi Manyama, Apr 29 2022
-
a(n) = if(n==0, 1, sum(k=1, sqrtint(n), binomial(n-1, k^2-1)*a(n-k^2))); \\ Seiichi Manyama, Apr 29 2022
A353180
Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^(k^2) / (k^2)!).
Original entry on oeis.org
1, 1, 2, 6, 25, 130, 810, 5880, 48790, 455491, 4725020, 53915730, 671141130, 9050528630, 131437406100, 2045160117000, 33944105995801, 598591246152934, 11176863039391538, 220287874849834596, 4570225746232479690, 99557506547622369750, 2272028399094852806100
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k^2] * a[n - k^2], {k, 1, Floor@Sqrt[n]}]; Array[a, 23, 0] (* Amiram Eldar, Apr 30 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, sqrtint(N), x^k^2/(k^2)!))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, sqrtint(i), binomial(i, j^2)*v[i-j^2+1])); v;
Showing 1-6 of 6 results.
Comments