cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A112428 Carmichael numbers equal to the product of 5 primes.

Original entry on oeis.org

825265, 1050985, 9890881, 10877581, 12945745, 13992265, 16778881, 18162001, 27336673, 28787185, 31146661, 36121345, 37167361, 40280065, 41298985, 41341321, 41471521, 47006785, 67371265, 67994641, 69331969, 74165065
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 11 2005

Keywords

Comments

A subsequence is given by (6n+1)*(12n+1)*(18n+1)*(36n+1)*(72n+1) with n in A206349. - M. F. Hasler, Apr 14 2015

Examples

			a(1)=825265=5*7*17*19*73
		

Crossrefs

Programs

Formula

A112428 = A002997 intersect A014614. - M. F. Hasler, Apr 14 2015

Extensions

Crossrefs added by M. F. Hasler, Apr 14 2015

A206024 Numbers k such that 6k+1, 12k+1, 18k+1 and 36k+1 are all primes.

Original entry on oeis.org

1, 45, 56, 121, 206, 255, 380, 506, 511, 710, 871, 1025, 1421, 1515, 1696, 2191, 2571, 2656, 2681, 3341, 3566, 3741, 3796, 3916, 3976, 4235, 4340, 4426, 5645, 5875, 6006, 7066, 7616, 7826, 7976, 8900, 8925, 8976, 9025, 9186, 9600, 9761, 10920, 11301, 11385
Offset: 1

Views

Author

Keywords

Comments

(6k+1)*(12k+1)*(18k+1)*(36k+1) is a Carmichael number for all k in this sequence. - José María Grau Ribas, Feb 06 2012

Crossrefs

Programs

  • GAP
    Filtered([1..12000],n->IsPrime(6*n+1) and IsPrime(12*n+1) and IsPrime(18*n+1) and IsPrime(36*n+1)); # Muniru A Asiru, May 27 2018
  • Magma
    [n: n in [0..2*10^4] | IsPrime(6*n+1) and IsPrime(12*n+1) and IsPrime(18*n+1) and  IsPrime(36*n+1)]; // Vincenzo Librandi, Apr 15 2015
    
  • Maple
    select(n->isprime(6*n+1) and isprime(12*n+1) and isprime(18*n+1) and isprime(36*n+1),[$1..12000]); # Muniru A Asiru, May 27 2018
  • Mathematica
    Select[Range[20000], PrimeQ[6 # + 1] && PrimeQ[12 # + 1] && PrimeQ[18 # + 1] && PrimeQ[36 # + 1] &]
    Select[Range[12000],And@@PrimeQ[{6,12,18,36}#+1]&] (* Harvey P. Dale, Mar 25 2013 *)
  • PARI
    forprime(p=2,1e5,if(p%6!=1,next);if(isprime(2*p-1)&&isprime(3*p-2)&&isprime(6*p-5),print1(p\6", "))) \\ Charles R Greathouse IV, Feb 06 2012
    
  • PARI
    is(m,c=36)=!until(bittest(c\=2,0)&&9>c+=3, isprime(m*c+1)||return) \\ M. F. Hasler, Apr 15 2015
    

A257035 Numbers m such that 6m+1, 12m+1, 18m+1, 36m+1 and 72m+1 are all prime.

Original entry on oeis.org

1, 121, 380, 506, 511, 3796, 5875, 6006, 8976, 9025, 9186, 10920, 12245, 12896, 14476, 14800, 15386, 22451, 23471, 32326, 35175, 38460, 39536, 40420, 41456, 43430, 44415, 59901, 60076, 61341, 74676, 76615, 76986, 82530, 87390, 99486, 101101, 107926, 112315, 112840, 115101
Offset: 1

Views

Author

M. F. Hasler, Apr 14 2015

Keywords

Comments

A subsequence of A206024, which contains A206349 as a subsequence, see there for motivations.

Crossrefs

Programs

  • GAP
    Filtered([1..120000],m->IsPrime(6*m+1) and IsPrime(12*m+1) and IsPrime(18*m+1) and IsPrime(36*m+1) and IsPrime(72*m+1)); # Muniru A Asiru, Jun 06 2018
  • Magma
    [n: n in [0..2*10^5] | IsPrime(6*n+1) and IsPrime(12*n+1) and IsPrime(18*n+1) and IsPrime(36*n+1)and IsPrime(72*n+1)]; // Vincenzo Librandi, Apr 15 2015
    
  • Maple
    f:=isprime: select(m->f(6*m+1) and f(12*m+1) and f(18*m+1) and f(36*m+1) and f(72*m+1),[$1..120000] ); # Muniru A Asiru, Jun 06 2018
  • Mathematica
    Select[Range[120000], PrimeQ[6 # + 1] && PrimeQ[12 # + 1] && PrimeQ[18 # + 1] && PrimeQ[36 # + 1] && PrimeQ[72 # + 1] &] (* Vincenzo Librandi, Apr 15 2015 *)
    Select[Range[120000],AllTrue[{6,12,18,36,72}#+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 23 2016 *)
  • PARI
    is(m,c=72)=!until(bittest(c\=2,0)&&9>c+=3,isprime(m*c+1)||return)
    

A318646 The least Chernick's "universal form" Carmichael number with n prime factors.

Original entry on oeis.org

1729, 63973, 26641259752490421121, 1457836374916028334162241, 24541683183872873851606952966798288052977151461406721, 53487697914261966820654105730041031613370337776541835775672321, 58571442634534443082821160508299574798027946748324125518533225605795841
Offset: 3

Views

Author

Amiram Eldar, Aug 31 2018

Keywords

Comments

Chernick proved that U(k, m) = (6m + 1)*(12m + 1)*Product_{i = 1..k-2} (9*(2^i)m + 1), for k >= 3 and m >= 1 is a Carmichael number, if all the factors are primes and, for k >= 4, 2^(k-4) divides m. He called U(k, m) "universal forms". This sequence gives a(k) = U(k, m) with the least value of m. The least values of m for k = 3, 4, ... are 1, 1, 380, 380, 780320, 950560, 950560, 3208386195840, 31023586121600, ...

Examples

			For k=3, m = 1, a(3) = U(3, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1) = 1729.
For k=4, m = 1, a(4) = U(4, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1)*(36*1 + 1) = 63973.
For k=5, m = 380, a(5) = U(5, 1) = (6*380 + 1)*(12*380 + 1)*(18*380 + 1)*(36*380 + 1)*(72*380 + 1) =  26641259752490421121.
		

Crossrefs

Cf. A002997, A033502 (3 prime factors), A206024 (4 prime factors), A206349 (5 prime factors), A126797.

Programs

  • Mathematica
    fc[k_] := If[k < 4, 1, 2^(k - 4)]; a={};Do[v = Join[{6, 12}, 2^Range[k-2]*9];
    w = fc[k]; x = v*w; m = 1; While[! AllTrue[x*m + 1, PrimeQ], m++]; c=Times @@ (x*m + 1);AppendTo[a,c], {k, 3, 9}]; a

A372188 Numbers m such that 18*m + 1, 36*m + 1, 108*m + 1, and 162*m + 1 are all primes.

Original entry on oeis.org

1, 71, 155, 176, 241, 346, 420, 540, 690, 801, 1145, 1421, 1506, 2026, 2066, 3080, 3235, 3371, 3445, 3511, 3640, 4746, 4925, 5681, 5901, 6055, 6520, 7931, 8365, 8970, 9006, 9556, 9685, 10186, 11396, 11750, 11935, 12055, 12666, 13205, 13266, 13825, 13881, 14606
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (18*m + 1) * (36*m + 1) * (108*m + 1) * (162*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form W_4(3*m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 12490201, 288503529142321, 6548129556412321, ...

Examples

			1 is a term since 18*1 + 1 = 19, 36*1 + 1 = 37, 108*1 + 1 = 109, and 162*1 + 1 = 163 are all primes.
71 is a term since 18*71 + 1 = 1279, 36*71 + 1 = 2557, 108*71 + 1 = 7669, and 162*71 + 1 = 11503 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{18, 36, 108, 162}, PrimeQ[#*n + 1] &]; Select[Range[15000], q]
  • PARI
    is(n) = isprime(18*n + 1) && isprime(36*n + 1) && isprime(108*n + 1) && isprime(162*n + 1);

A372186 Numbers m such that 20*m + 1, 80*m + 1, 100*m + 1, and 200*m + 1 are all primes.

Original entry on oeis.org

333, 741, 1659, 1749, 2505, 2706, 2730, 4221, 4437, 4851, 5625, 6447, 7791, 7977, 8229, 8250, 9216, 10833, 12471, 13950, 14028, 15147, 16002, 17667, 18207, 18246, 19152, 20517, 23400, 23421, 23961, 25689, 26247, 28587, 28608, 30363, 31584, 34167, 36330, 36378
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (20*m + 1) * (80*m + 1) * (100*m + 1) * (200*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{4,4}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 393575432565765601, 9648687289456956001, 242412946401534283201, ...

Examples

			333 is a term since 20*333 + 1 = 6661, 80*333 + 1 = 26641, 100*333 + 1 = 33301, and 200*333 + 1 = 66601 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{20, 80, 100, 200}, PrimeQ[# * n + 1] &]; Select[Range[40000], q]
  • PARI
    is(n) = isprime(20*n + 1) && isprime(80*n + 1) && isprime(100*n + 1) && isprime(200*n + 1);

A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.

Original entry on oeis.org

95, 890, 3635, 8150, 9850, 12740, 13805, 18715, 22590, 23591, 32526, 36395, 38571, 49016, 49456, 57551, 58296, 61275, 80756, 81050, 84980, 99940, 104346, 115361, 116761, 121055, 122550, 129320, 140331, 142625, 149431, 153505, 159306, 159730, 169625, 173485, 181661
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2024

Keywords

Comments

If m is a term, then (72*m + 1) * (576*m + 1) * (648*m + 1) * (1296*m + 1) * (2592*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{5,5}(m) in Nakamula et al. (2007).
The corresponding Carmichael numbers are 698669495582067436250881, 50411423376758357271937215361, 57292035175893741987253427965441, ...

Examples

			95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
  • PARI
    is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);
Showing 1-7 of 7 results.