A207262 a(n) = 2^(4n - 2) + 1.
5, 65, 1025, 16385, 262145, 4194305, 67108865, 1073741825, 17179869185, 274877906945, 4398046511105, 70368744177665, 1125899906842625, 18014398509481985, 288230376151711745, 4611686018427387905, 73786976294838206465, 1180591620717411303425, 18889465931478580854785, 302231454903657293676545
Offset: 1
References
- David Wells, Prime Numbers: The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons (2005) p. 15
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- FactorDB, Factorizations of 2^(4*n-2)+1
- P. H. Fuss, Correspondance math. et physique, 1 (1843) p. 145.
- Primenumbers Yahoo Group, Aurifeuille and factoring, search results.
- Eric Weisstein's World of Mathematics, Aurifeuillean Factorization.
- Yahoo Groups, Aurifeuille and factoring
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Programs
-
Mathematica
2^(4*Range[20] - 2) + 1 LinearRecurrence[{17, -16}, {5, 65}, 50] (* Vincenzo Librandi, Mar 03 2012 *)
-
PARI
a(n)=4^(2*n-1)+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 4^(2n - 1) + 1.
G.f.: 5*x*(1-4*x)/((1-x)*(1-16*x)). - Bruno Berselli, Feb 17 2012
a(1) = 5, a(n) = 16*(a(n-1) - 1) + 1. - Arkadiusz Wesolowski, Feb 17 2012
a(n) = 5*A299960(n-1). - R. J. Mathar, Feb 28 2018
E.g.f.: exp(x) + (exp(16*x) - 5)/4. - Stefano Spezia, Jan 30 2020
Comments