cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208354 Number of compositions of n with at most one even part.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 41, 72, 126, 219, 379, 653, 1121, 1918, 3272, 5567, 9449, 16003, 27049, 45636, 76866, 129267, 217079, 364057, 609793, 1020218, 1705036, 2846647, 4748101, 7912559, 13174889, 21919488, 36440646, 60538443, 100503667, 166744997, 276476129
Offset: 0

Views

Author

Alois P. Heinz, Feb 25 2012

Keywords

Comments

Conjecture: a(n) is the number of compositions of n if all the 1's are constrained to be in a single run; for example, a(7) counts the compositions 4,1,1,1 and 1,1,1,4 but not the compositions 1,4,1,1 and 1,1,4,1. - Gregory L. Simay, Sep 29 2018
This also gives the number of ordered partitions of n into parts of sizes 1, 2, and 3 with at most one 3. - Jerrold Grossman, Apr 03 2024

Examples

			a(4) =  7: {4, 13, 31, 112, 121, 211, 1111}.
a(5) = 13: {5, 14, 41, 23, 32, 113, 131, 311, 1112, 1121, 1211, 2111, 11111}.
a(6) = 23: {6, 15, 51, 33, 114, 141, 411, 123, 132, 213, 231, 312, 321, 1113, 1131, 1311, 3111, 11112, 11121, 11211, 12111, 21111, 111111}.
		

Crossrefs

Programs

  • GAP
    T:=n->((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5; a:=List([0..40],n->T(n+1)-T(n-1)); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    I:=[1,1,2,4]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Oct 29 2018
  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n.
             <<1, 1, 2, 4>>)[1, 1]:
    seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{2, 1, -2, -1}, {1, 1, 2, 4}, 40] (* Jean-François Alcover, Feb 18 2017 *)
    CoefficientList[Series[((-1 + x)^2 (1 + x))/(-1 + x + x^2)^2, {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
  • PARI
    x='x+O('x^50); Vec((x+1)*(x-1)^2/(x^2+x-1)^2) \\ Altug Alkan, Oct 02 2018
    

Formula

G.f.: (x+1)*(x-1)^2/(x^2+x-1)^2.
a(n) = T(n+1) - T(n-1), where T(n) = ((2*n+3)*Fibonacci(n) - n*Fibonacci(n-1)) / 5 = A010049(n). - Gary Detlefs, Jan 19 2013
a(n) = (2*(A099920(n-2)+A000045(n+2)) + A099920(n-1)+A000045(n+1)) / 5. - Yuchun Ji, Mar 21 2019