A208354 Number of compositions of n with at most one even part.
1, 1, 2, 4, 7, 13, 23, 41, 72, 126, 219, 379, 653, 1121, 1918, 3272, 5567, 9449, 16003, 27049, 45636, 76866, 129267, 217079, 364057, 609793, 1020218, 1705036, 2846647, 4748101, 7912559, 13174889, 21919488, 36440646, 60538443, 100503667, 166744997, 276476129
Offset: 0
Examples
a(4) = 7: {4, 13, 31, 112, 121, 211, 1111}. a(5) = 13: {5, 14, 41, 23, 32, 113, 131, 311, 1112, 1121, 1211, 2111, 11111}. a(6) = 23: {6, 15, 51, 33, 114, 141, 411, 123, 132, 213, 231, 312, 321, 1113, 1131, 1311, 3111, 11112, 11121, 11211, 12111, 21111, 111111}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 11.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
GAP
T:=n->((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5; a:=List([0..40],n->T(n+1)-T(n-1)); # Muniru A Asiru, Oct 28 2018
-
Magma
I:=[1,1,2,4]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Oct 29 2018
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n. <<1, 1, 2, 4>>)[1, 1]: seq(a(n), n=0..40);
-
Mathematica
LinearRecurrence[{2, 1, -2, -1}, {1, 1, 2, 4}, 40] (* Jean-François Alcover, Feb 18 2017 *) CoefficientList[Series[((-1 + x)^2 (1 + x))/(-1 + x + x^2)^2, {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
-
PARI
x='x+O('x^50); Vec((x+1)*(x-1)^2/(x^2+x-1)^2) \\ Altug Alkan, Oct 02 2018
Comments