A209229 Characteristic function of powers of 2, cf. A000079.
0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
x + x^2 + x^4 + x^8 + x^16 + x^32 + x^64 + x^128 + x^256 + x^512 + x^1024 + ...
References
- Michel Dekking, Michel Mendes France and Alf van der Poorten, "Folds", The Mathematical Intelligencer, Vol. 4, No. 3 (1982), pp. 130-138 & front cover, and Vol. 4, No. 4 (1982), pp. 173-181 (printed in two parts).
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537 (terms 0..1000 from G. C. Greubel)
- Index entries for characteristic functions
- Index to divisibility sequences
Crossrefs
Programs
-
C
int a (unsigned long n) { return n & !(n & (n-1)); } /* Charles R Greathouse IV, Sep 15 2012 */
-
Haskell
a209229 n | n < 2 = n | n > 1 = if m > 0 then 0 else a209229 n' where (n',m) = divMod n 2
-
Maple
A209229 := proc(n) if n <= 0 then 0 ; elif n = 1 then 1; elif type (n,'odd') or A001221(n) > 1 then 0 ; else 1; end if; end proc: seq(A209229(n),n=0..40) ; # R. J. Mathar, Jan 07 2021
-
Mathematica
a[n_] := Boole[n == 2^IntegerExponent[n, 2]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 06 2014 *) Table[If[IntegerQ[Log[2,n]],1,0],{n,0,100}] (* Harvey P. Dale, Jun 24 2018 *)
-
PARI
a(n)=n==1<
Charles R Greathouse IV, Mar 07 2012 -
PARI
{a(n) = if( n<2 || n%2, n==1, isprimepower(n) > 0)} \\ Michael Somos, Jan 03 2013
-
Python
def A209229(n): return int(not(n&-n)^n) if n else 0 # Chai Wah Wu, Jul 08 2022
Formula
a(n+1) = A036987(n).
a(n) = if n < 2 then n else (if n is even then a(n/2) else 0).
The generating function g(x) satisfies g(x) - g(x^2) = x. - Joerg Arndt, May 11 2010
Dirichlet g.f.: 1/(1 - 2^(-s)). - R. J. Mathar, Mar 07 2012
G.f.: x / (1 - x / (1 + x / (1 + x / (1 - x / (1 + x / (1 - x / ...)))))) = x / (1 + b(1) * x / (1 + b(2) * x / (1 + b(3) * x / ...))) where b(n) = (-1)^ A090678(n+1). - Michael Somos, Jan 03 2013
With a(0) = 0 removed is convolution inverse of A104977. - Michael Somos, Jan 03 2013
From Antti Karttunen, Nov 19 2017: (Start)
a(n) = abs(A154269(n)).
a(n) = A048298(n)/n. - R. J. Mathar, Jan 07 2021
a(n) = floor((2^n)/n) - floor((2^n - 1)/n), for n>=1. - Ridouane Oudra, Oct 15 2021
Comments