A135523 a(n) = A007814(n) + A209229(n).
1, 2, 0, 3, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Maple
GS(4,1,200); [see A135416].
-
PARI
A135523(n) = (valuation(n,2)+(n && !bitand(n,n-1))); \\ Antti Karttunen, Sep 27 2018
-
Python
def A135523(n): return (~n& n-1).bit_length()+int(not(n&-n)^n) # Chai Wah Wu, Jul 08 2022
Formula
G.f.: x + Sum_{k>=1} x^(2^k)*(1 + 1/(1 - x^(2^k))). - Ilya Gutkovskiy, Mar 30 2017
a(n) = A135560(n) - 1. Antti Karttunen, Sep 27 2018
Comments