cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A211266 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 12, 15, 18, 21, 24, 28, 30, 34, 38, 41, 44, 49, 51, 56, 60, 63, 67, 72, 75, 79, 83, 88, 91, 97, 99, 104, 109, 112, 117, 123, 125, 130, 135, 140, 143, 149, 152, 157, 163, 167, 170, 177, 180, 186, 190, 194, 199, 205, 209, 215, 219, 223
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Guide to related sequences:
A056924 ... 1<=x
A211159 ... 1<=x
A211261 ... 1<=x
A211262 ... 1<=x
A211263 ... 1<=x
A211264 ... 1<=x
A211265 ... 1<=x
A211266 ... 1<=x
A211267 ... 1<=x
A181972 ... 1<=x
A038548 ... 1<=x<=y<=n ... x*y=n
A072670 ... 1<=x<=y<=n ... x*y=n+1
A211270 ... 1<=x<=y<=n ... x*y=2n
A211271 ... 1<=x<=y<=n ... x*y=3n
A211272 ... 1<=x<=y<=n ... x*y=floor(n/2)
A094820 ... 1<=x<=y<=n ... x*y<=n
A091627 ... 1<=x<=y<=n ... x*y<=n+1
A211273 ... 1<=x<=y<=n ... x*y<=2n
A211274 ... 1<=x<=y<=n ... x*y<=3n
A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2)

Examples

			a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4).
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A211159 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 2, 1, 3, 0, 2, 1, 3, 0, 5, 0, 1, 2, 2, 1, 3, 0, 4, 1, 1, 0, 5, 1, 1, 1, 3, 0, 5, 1, 2, 1, 1, 1, 5, 0, 2, 2, 3
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(11) counts these pairs: (2,6), (3,4).
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1}, {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
  • PARI
    A211159(n) = (numdiv(1+n)-issquare(1+n)-2)/2; \\ Antti Karttunen, Jul 07 2017
    
  • Scheme
    (define (A211159 n) (/ (- (A000005 (+ 1 n)) (A010052 (+ 1 n)) 2) 2)) ;; Antti Karttunen, Jul 07 2017

Formula

a(n) = (A000005(1+n) - A010052(1+n) - 2)/2 = A200213(1+n)/2. - Antti Karttunen, Jul 07 2017

A211264 Number of integer pairs (x,y) such that 0 < x < y <= n and x*y <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 16, 17, 19, 21, 23, 24, 27, 28, 31, 33, 35, 36, 40, 41, 43, 45, 48, 49, 53, 54, 57, 59, 61, 63, 67, 68, 70, 72, 76, 77, 81, 82, 85, 88, 90, 91, 96, 97, 100, 102, 105, 106, 110, 112, 116, 118, 120, 121, 127, 128, 130, 133, 136
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Partial sums of A056924.
For a guide to related sequences, see A211266.

Crossrefs

Programs

  • Magma
    [0] cat [&+[(&+[p[2]: p in Factorization(i)] mod 2) *Floor(n div i):i in [2..n] ]:n in [2..65]]; // Marius A. Burtea, Oct 17 2019
    
  • Maple
    with(numtheory): seq(add((bigomega(i) mod 2)*floor(n/i), i=1..n), n=1..60); # Ridouane Oudra, Oct 17 2019
    # Alternative:
    ListTools:-PartialSums(map(t-> floor(numtheory:-tau(t)/2), [$1..100])); # Robert Israel, Oct 18 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
  • Python
    from math import isqrt
    def A211264(n): return (lambda m: sum(n//k for k in range(1, m+1))-m*(m+1)//2)(isqrt(n)) # Chai Wah Wu, Oct 08 2021

Formula

a(n) = (1/2)*Sum_{i=1..n} (1 - A008836(i))*floor(n/i). - Enrique Pérez Herrero, Jul 10 2012 [Corrected by Ridouane Oudra, Oct 17 2019]
From Ridouane Oudra, Oct 17 2019: (Start)
a(n) = Sum_{i=1..n} A066829(i)*floor(n/i)
a(n) = (1/2)*(A006218(n) - A000196(n)). (End)
From Ridouane Oudra, Sep 28 2024: (Start)
a(n) = Sum_{k=1..n} floor((sqrt(k^2 + 4*n) - k)/2) ;
a(n) = A094820(n) - A000196(n) ;
a(n) = A181972(2*n). (End)

A211262 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 1, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 5, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 3, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 6, 5, 2, 1, 5
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. also A211271.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
  • PARI
    A211262(n) = { my(n3=3*n); sumdiv(n3,d,(d < (n3/d) && (n3/d) <= n)); }; \\ Antti Karttunen, Jan 15 2025

Extensions

Data section extended up to a(108) by Antti Karttunen, Jan 15 2025

A181972 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 7, 7, 9, 9, 10, 10, 12, 12, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21, 23, 23, 24, 24, 27, 27, 28, 28, 31, 31, 33, 33, 35, 35, 36, 36, 40, 40, 41, 41, 43, 43, 45, 45, 48, 48, 49, 49, 53, 53, 54, 54, 57, 57, 59, 59, 61, 61, 63, 63, 67
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A211263 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 4, 4, 1, 1, 2, 2, 2, 2, 4, 4, 1, 1, 4, 4, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 5, 5, 1, 1
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(12) counts these pairs: (1,6) and (2,3).
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A211265 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 11, 12, 15, 16, 18, 20, 22, 23, 26, 27, 30, 32, 34, 35, 39, 40, 42, 44, 47, 48, 52, 53, 56, 58, 60, 62, 66, 67, 69, 71, 75, 76, 80, 81, 84, 87, 89, 90, 95, 96, 99, 101, 104, 105, 109, 111, 115, 117, 119, 120, 126, 127, 129, 132, 135, 137
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A211267 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 3, 6, 9, 12, 16, 20, 23, 28, 32, 37, 40, 46, 51, 56, 60, 65, 71, 77, 81, 87, 91, 99, 103, 109, 115, 121, 125, 133, 138, 145, 150, 156, 163, 169, 174, 181, 187, 196, 199, 207, 212, 220, 226, 232, 239, 247, 252, 259, 265, 274, 277, 287, 293, 301, 307
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(5) counts these pairs: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5).
		

Crossrefs

Cf. A211266.

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    L:= Vector(N):
    for x from 1 to floor(sqrt(N)) do
       for y from x+1 while y<=N and x*y<=3*N do
         n0:= max(y, ceil(x*y/3));
         L[n0]:= L[n0]+1;
    od od:
    ListTools:-PartialSums(convert(L,list)); # Robert Israel, Oct 18 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A211270 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y = 2n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 4, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 5, 1, 3, 3, 2, 3, 5, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 5, 2, 4, 3, 3, 1, 5, 3, 4, 3, 2, 1, 7, 1, 2, 5, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3, 4, 1, 8, 3, 3, 3, 2, 3, 6, 1, 4, 5
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(12) counts these pairs: (2,12), (3,8), (4,6).
For n = 2, only the pair (2,2) satisfies the condition, thus a(2) = 1. - _Antti Karttunen_, Sep 30 2018
		

Crossrefs

Programs

  • Maple
    seq(floor((numtheory:-tau(2*n)-1)/2),n=1..100); # Robert Israel, Feb 25 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* this sequence *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211270(n) = sumdiv(2*n,y,(((2*n/y)<=y)&&(y<=n))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = floor((A000005(2n)-1)/2). - Robert Israel, Feb 25 2019

Extensions

Term a(2) corrected by Antti Karttunen, Sep 30 2018
Showing 1-9 of 9 results.