cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A328274 Numbers m such that phi(m) = rad(m)^3, where phi is the Euler totient function (A000010) and rad is the squarefree kernel function (A007947).

Original entry on oeis.org

1, 16, 648, 2500, 101250, 259308, 1542294, 3660250, 4691556, 33734898, 846948966, 1877404326, 21107677374, 39691260010, 535377671178, 178726991395974
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2019

Keywords

Comments

De Koninck et al. showed that there are 16 terms in this sequence.

Examples

			16 is in the sequence since phi(16) = 8, rad(16) = 2 and 8 = 2^3.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; aQ[n_] := EulerPhi[n] == rad[n]^3; Select[Range[5*10^6], aQ]

A328275 Numbers m such that phi(m) = rad(m)^4, where phi is the Euler totient function (A000010) and rad is the squarefree kernel function (A007947).

Original entry on oeis.org

1, 32, 3888, 25000, 2839714, 3037500, 10890936, 120298932, 402627500, 534837384, 7489147356, 8508543750, 48919241250, 111945866022, 336977358354, 417841706250, 553904623764, 1498168652148, 2627525125250, 2761526809032, 2898701538750, 7978057537338, 16548448068126, 20978349935382
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2019

Keywords

Comments

De Koninck et al. showed that there are 85 terms in this sequence, yet a(6) = 3037500 was missing in their paper. With a(6), it was verified numerically that the first 38 terms (terms below 10^18) are correct.

Examples

			32 is in the sequence since phi(32) = 16, rad(32) = 2 and 16 = 2^4.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; aQ[n_] := EulerPhi[n] == rad[n]^4; Select[Range[3*10^6], aQ]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    isok(m) = eulerphi(m) == rad(m)^4; \\ Michel Marcus, Oct 15 2019

Extensions

a(6) = 3037500 from Marius A. Burtea, Oct 11 2019

A328276 The number of solutions to phi(x) = rad(x)^n, where phi is the Euler totient function (A000010) and rad is the squarefree kernel function (A007947).

Original entry on oeis.org

3, 6, 16, 85, 969
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2019

Keywords

Comments

The author informs me that because there of an error in one of the references, a(4) is > 85. - N. J. A. Sloane, Nov 23 2019

Examples

			a(1) = 3 since there are only 3 solutions to phi(x) = rad(x): x = 1, 4, and 18.
a(2) = 6 since there are only 6 solutions to phi(x) = rad(x)^2: x = 1, 8, 108, 250, 6174, and 41154 (the terms of A211413).
		

Crossrefs

A337775 a(n) is the least natural k which is a multiple of prime(n) such that for some m >= 0, phi(k) = rad(k)^m, where phi(k) = A000010(k) and rad(k) = A007947(k).

Original entry on oeis.org

2, 18, 250, 6174, 3660250, 1542294, 2839714, 41154, 117793122328750, 7978057537338, 2898701538750, 33734898, 29688151506250, 21107677374, 69834458642125879757481250, 3999523458421521342
Offset: 1

Views

Author

Vladislav Shubin, Sep 20 2020

Keywords

Comments

The number m mentioned above is usually referred to as the order of the corresponding number a(n). The sequence of these orders is in A337776.
The algorithm suggested here for the calculation of a(n) starts its work from prime(n).
Numbers k such that phi(k) = rad(k)^m with m >= 1 are given in A211413. - Andrew Howroyd, Sep 21 2020

Examples

			For n=12 the initial prime is prime(12) = 37 and a(12) = 33734898 because phi(33734898) = 10941048, rad(33734898) = 222 and 222^3 = 10941048 and there is no smaller number satisfying the requirements. The order of a(12) is 3.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 108, p. 38, Ellipses, Paris 2008.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problème 745 ; pp 95; 317-8, Ellipses Paris 2004.

Crossrefs

Cf. A000010 (phi), A000040 (prime), A007947 (rad), A023503, A024619, A105261, A211413.

Programs

  • Mathematica
    nn = 16;
    Sar = Table[0, {nn}]; Sar[[1]] = 2;
    (*It is a list oh the sequence A337775*)
    OrdSar = Table[0, {nn}]; OrdSar[[1]] = 0;
    (*It is a sequence A337776 - the orders of members in sequence A337775*) For[Index = 2, Index <= nn, Index++,
      InitialPrime = Prime[Index];
      InitialInteger = InitialPrime - 1;
      InitialArray = FactorInteger[InitialInteger];
      For[i = 1, i <= Length[InitialArray], i++,
       CurrentArray =
        FactorInteger[InitialArray[[-i, 1]] - 1] ~Join~ InitialArray;
       InitialInterger =
        Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1,
          Length[CurrentArray]}];
         InitialArray = FactorInteger[InitialInterger];
       ];
      InitialArray = InitialArray ~Join~ {{InitialPrime, 0}};
      Ord = Max[InitialArray[[All, 2]]];
      Lint = Product[
        Power[InitialArray[[k, 1]], Ord - InitialArray[[k, 2]] + 1], {k,
         1, Length[InitialArray]}];
      radn = Product[InitialArray[[k, 1]], {k, 1, Length[InitialArray]}];
      Sar[[Index]] = Lint;
      OrdSar[[Index]] = Ord;
      ];
    Print["Sar=  ", Sar]
    Print["OrdSar=  ", OrdSar]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    isok(k) = my(phik=eulerphi(k), radk=rad(k), x=logint(phik, radk)); radk^x == phik;
    a(n) = {my(p=prime(n), k=p); while (!isok(k), k+=p); k;} \\ Michel Marcus, Sep 23 2020
Showing 1-4 of 4 results.