cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049470 Decimal expansion of cos(1).

Original entry on oeis.org

5, 4, 0, 3, 0, 2, 3, 0, 5, 8, 6, 8, 1, 3, 9, 7, 1, 7, 4, 0, 0, 9, 3, 6, 6, 0, 7, 4, 4, 2, 9, 7, 6, 6, 0, 3, 7, 3, 2, 3, 1, 0, 4, 2, 0, 6, 1, 7, 9, 2, 2, 2, 2, 7, 6, 7, 0, 0, 9, 7, 2, 5, 5, 3, 8, 1, 1, 0, 0, 3, 9, 4, 7, 7, 4, 4, 7, 1, 7, 6, 4, 5, 1, 7, 9, 5, 1, 8, 5, 6, 0, 8, 7, 1, 8, 3, 0, 8, 9
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the real part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.5403023058681397...
		

Crossrefs

Cf. A049469 (imaginary part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A073743 ( cosh(1) ), A073448, A275651.

Programs

Formula

Continued fraction representation: cos(1) = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). See A275651 for proof. Cf. A073743. - Peter Bala, Sep 02 2016
Equals Sum_{k >= 0} (-1)^k/A010050(k), where A010050(k) = (2k)! [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals 1/A073448. - Alois P. Heinz, Jan 23 2023
From Gerry Martens, May 04 2024: (Start)
Equals (4*(cos(1/4)^4 + sin(1/4)^4) - 3).
Equals (16*(cos(1/4)^6 + sin(1/4)^6) - 10)/6. (End)

A049469 Decimal expansion of sin(1).

Original entry on oeis.org

8, 4, 1, 4, 7, 0, 9, 8, 4, 8, 0, 7, 8, 9, 6, 5, 0, 6, 6, 5, 2, 5, 0, 2, 3, 2, 1, 6, 3, 0, 2, 9, 8, 9, 9, 9, 6, 2, 2, 5, 6, 3, 0, 6, 0, 7, 9, 8, 3, 7, 1, 0, 6, 5, 6, 7, 2, 7, 5, 1, 7, 0, 9, 9, 9, 1, 9, 1, 0, 4, 0, 4, 3, 9, 1, 2, 3, 9, 6, 6, 8, 9, 4, 8, 6, 3, 9, 7, 4, 3, 5, 4, 3, 0, 5, 2, 6, 9, 5
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the imaginary part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 12 2019

Examples

			0.8414709848078965...
		

Crossrefs

Cf. A049470 (real part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A074790.

Programs

Formula

Continued fraction representation: sin(1) = 1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/((4*n^2 + 2*n - 1) + ... )))). See A074790 for details. - Peter Bala, Jan 30 2015
Equals Sum_{k > 0} (-1)^(k-1)/((2k-1)!) = Sum_{k > 0} (-1)^(k-1)/A009445(k-1) [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals Product{k>=1} cos(1/2^k). - Amiram Eldar, Aug 20 2020
Equals Integral_{x=-1..1} cos(x)/[exp(1/x)+1] dx. [Nahin]. - R. J. Mathar, May 16 2024

A211884 Decimal expansion of the imaginary part of -(i^e).

Original entry on oeis.org

9, 0, 3, 6, 7, 4, 6, 2, 3, 7, 7, 6, 3, 9, 5, 5, 3, 6, 6, 0, 0, 8, 5, 3, 4, 5, 9, 3, 3, 4, 3, 4, 2, 5, 4, 1, 9, 4, 1, 8, 0, 0, 3, 0, 3, 4, 6, 3, 2, 2, 0, 2, 0, 5, 8, 9, 7, 4, 3, 7, 5, 9, 9, 9, 1, 3, 1, 2, 1, 6, 5, 3, 9, 9, 0, 8, 5, 8, 9, 5, 2, 8, 7, 8, 4, 9, 3
Offset: 0

Views

Author

Stanislav Sykora, Apr 24 2012

Keywords

Comments

Also, decimal expansion of -sin(Pi*e/2).
The decimal expansion of the real part of -i^e is in A211883.

Examples

			0.90367462377639553660085345933434254194180030346322020589743759991312...
		

Crossrefs

Cf. A211883.

Programs

  • Mathematica
    RealDigits[Im[-I^E], 10, 87][[1]] (* Bruno Berselli, Apr 24 2012 *)

A222128 Decimal expansion of the real part of 1/i^Pi, where i=sqrt(-1).

Original entry on oeis.org

2, 2, 0, 5, 8, 4, 0, 4, 0, 7, 4, 9, 6, 9, 8, 0, 8, 8, 6, 6, 8, 9, 4, 5, 9, 1, 3, 2, 5, 5, 7, 8, 7, 5, 1, 0, 4, 5, 8, 8, 4, 8, 0, 3, 8, 1, 5, 9, 4, 1, 0, 6, 7, 2, 3, 7, 0, 0, 4, 8, 8, 7, 3, 2, 2, 4, 8, 3, 3, 5, 5, 1, 2, 5, 0, 5, 9, 5, 6, 3, 9, 7, 2, 7, 1, 1, 3
Offset: 0

Views

Author

Bruno Berselli, Feb 08 2013

Keywords

Comments

Also, decimal expansion of the real part of i^Pi.

Examples

			0.22058404074969808866894591325578751045884803815941067237004887322...
		

Crossrefs

Cf. A102753, A211883, A222129 (imaginary part of 1/i^Pi).

Programs

  • Mathematica
    RealDigits[Re[1/I^Pi], 10, 90][[1]] (* or *) RealDigits[Cos[Pi^2/2], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(realpart(1/%i^%pi)));

Formula

Equals cos(Pi^2/2).
Showing 1-4 of 4 results.