cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A158493 a(n) = 20*n^2 + 1.

Original entry on oeis.org

1, 21, 81, 181, 321, 501, 721, 981, 1281, 1621, 2001, 2421, 2881, 3381, 3921, 4501, 5121, 5781, 6481, 7221, 8001, 8821, 9681, 10581, 11521, 12501, 13521, 14581, 15681, 16821, 18001, 19221, 20481, 21781, 23121, 24501, 25921, 27381, 28881, 30421, 32001, 33621, 35281
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (20*n^2 + 1)^2 - (100*n^2 + 10)*(2*n)^2 = 1 can be written as a(n)^2 - A158492(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 21 2012
Sequence found by reading the segment (1, 21) together with the line from 21, in the direction 21, 81, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. - Omar E. Pol, Nov 05 2012

Crossrefs

Programs

  • Magma
    I:=[1, 21, 81]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 21, 81}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
    20*Range[0,50]^2+1 (* Harvey P. Dale, Aug 06 2025 *)
  • PARI
    for(n=0, 40, print1(20*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 21 2012

Formula

From Vincenzo Librandi, Feb 21 2012: (Start)
G.f.: -(1 + 18*x + 21*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) + 1)/2. (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
E.g.f.: exp(x)*(1 + 20*x + 20*x^2).
a(n) = A212656(2*n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 12 2009

A374378 Iterated rascal triangle R2: T(n,k) = Sum_{m=0..2} binomial(n-k,m)*binomial(k,m).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 19, 15, 6, 1, 1, 7, 21, 31, 31, 21, 7, 1, 1, 8, 28, 46, 53, 46, 28, 8, 1, 1, 9, 36, 64, 81, 81, 64, 36, 9, 1, 1, 10, 45, 85, 115, 126, 115, 85, 45, 10, 1, 1, 11, 55, 109, 155, 181, 181, 155, 109, 55, 11, 1
Offset: 0

Views

Author

Kolosov Petro, Jul 06 2024

Keywords

Comments

Triangle T(n,k) is the second triangle R2 among the rascal-family triangles; A374452 is triangle R3; A077028 is triangle R1.
Triangle T(n,k) equals Pascal's triangle A007318 through row 2i+1, i=2 (i.e., row 5).
Triangle T(n,k) equals Pascal's triangle A007318 through column i, i=2 (i.e., column 2).

Examples

			Triangle begins:
--------------------------------------------------
k=     0   1   2   3    4    5    6   7   8   9 10
--------------------------------------------------
n=0:   1
n=1:   1   1
n=2:   1   2   1
n=3:   1   3   3   1
n=4:   1   4   6   4    1
n=5:   1   5  10  10    5    1
n=6:   1   6  15  19   15    6    1
n=7:   1   7  21  31   31   21    7   1
n=8:   1   8  28  46   53   46   28   8   1
n=9:   1   9  36  64   81   81   64  36   9   1
n=10:  1  10  45  85  115  126  115  85  45  10  1
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:=Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 2}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Center]

Formula

T(n,k) = 1 + k*(n-k) + (1/4)*(k-1)*k*(n-k-1)*(n-k).
Row sums give A006261(n).
Diagonal T(n+1, n) gives A000027(n).
Diagonal T(n+2, n) gives A000217(n).
Diagonal T(n+3, n) gives A005448(n).
Diagonal T(n+4, n) gives A056108(n).
Diagonal T(n+5, n) gives A212656(n).
Column k=3 difference binomial(n+6, 3) - T(n+6, 3) gives C(n+3,3)=A007318(n+3,3).
Column k=4 difference binomial(n+7, 4) - T(n+7, 4) gives fifth column of (1,4)-Pascal triangle A095667.
G.f.: (1 + 3*x^4*y^2 - (2*x + 3*x^3*y)*(1 + y) + x^2*(1 + 5*y + y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 09 2024

A158445 a(n) = 25*n^2 + 5.

Original entry on oeis.org

30, 105, 230, 405, 630, 905, 1230, 1605, 2030, 2505, 3030, 3605, 4230, 4905, 5630, 6405, 7230, 8105, 9030, 10005, 11030, 12105, 13230, 14405, 15630, 16905, 18230, 19605, 21030, 22505, 24030, 25605, 27230, 28905, 30630, 32405, 34230, 36105, 38030, 40005, 42030
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (10*n^2 + 1)^2 - (25*n^2 + 5)*(2*n)^2 = 1 can be written as A158187(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[30, 105, 230]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    Table[25n^2+5,{n,50}]
    LinearRecurrence[{3,-3,1},{30,105,230},50] (* Harvey P. Dale, Mar 21 2025 *)
  • PARI
    a(n) = 25*n^2 + 5.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 5*x*(6+3*x+x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/sqrt(5))*Pi/sqrt(5) - 1)/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/sqrt(5))*Pi/sqrt(5))/10. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 5*(exp(x)*(5*x^2 + 5*x + 1) - 1).
a(n) = 5*A212656(n). (End)

A212707 Semiprimes of the form 5*n^2 + 1.

Original entry on oeis.org

6, 21, 46, 321, 501, 721, 1126, 2206, 2881, 3646, 3921, 4501, 7606, 10581, 11521, 13521, 14581, 15681, 16246, 18001, 19846, 20481, 21781, 23806, 24501, 27381, 30421, 32001, 38721, 40501, 42321, 48021, 61606, 64981, 72001, 79381, 83206, 89781, 106581, 121681
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2012

Keywords

Comments

This is to A137530 (primes of form 1+5n^2) as semiprimes A001358 are to primes A000040. Since Z[sqrt(-5)] is not a unique factorization domain, some numbers of form 1+5n^2 are primes in Z but composite in Z[sqrt(-5)]; some values in this sequence are semiprimes in Z but have a different number than 2 of prime factors in Z[sqrt(-5)].

Examples

			a(6) = 721 = 1 + 5*(12^2) = 7 * 103.
		

Crossrefs

Cf. A001222, A001358, A137530, A212656 (5*n^2 + 1).

Programs

  • Magma
    IsSemiprime:= func; [s: n in [1..180] | IsSemiprime(s) where s is 5*n^2 + 1]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; Select[Table[5*n^2 + 1, {n, 200}], SemiPrimeQ] (* T. D. Noe, May 24 2012 *)
    Select[Table[5*n^2 + 1, {n, 180}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)

Formula

A212656 INTERSECTION A001358.
{k such that 5*n^2 + 1 for a natural number n, and bigomega(k) = A001222(k) = 2}.

Extensions

Extended by T. D. Noe, May 24 2012

A243813 Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 9, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 2, 5, 19, 1, 1, 1, 1, 1, 3, 7, 25, 1, 1, 1, 1, 1, 2, 4, 9, 33, 1, 1, 1, 1, 1, 1, 2, 5, 11, 41, 1, 1, 1, 1, 1, 1, 2, 3, 6, 14, 51, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 17, 61, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 9, 21
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 11 2014

Keywords

Comments

Refer to the construction rule used in A243618. For this case, the curvature is defined by (-1/k, 1/(k-1), 1), the circle radius will diverge to infinity (zero curvature). The integral curvatures appearing as periodic, i.e., 2, 6, 6, 10, 30, 42, 28, 12, ..., = A083482(k-1). The integral curvatures seem to align as some sequence, e.g., 3, 7, 13, 21, 31, 43, ..., = A002061(k) and 9, 25, 49, ..., = A016754(k-1). See illustration.

Examples

			Table begins:
  n/k  2   3   4   5   6   7  ...
   0   1   1   1   1   1   1  ...
   1   1   1   1   1   1   1  ...
   2   3   1   1   1   1   1  ...
   3   5   2   1   1   1   1  ...
   4   9   3   2   1   1   1  ...
   5  13   5   3   2   1   1  ...
   6  19   7   4   2   2   1  ...
   7  25   9   5   3   2   2  ...
   8  33  11   6   4   3   2  ...
   9  41  14   7   5   3   2  ...
  10  51  17   9   6   4   3  ...
  11  61  21  11   7   5   3  ...
  12  73  25  13   8   5   4  ...
  ...
		

Crossrefs

Cf. Column 1 = A080827(n), column 2 = A056827(n) + 1.
Cf. Integral curvature in column 1..6: [A058331, A227776, A056107, A212656, A158558, A158604].
Showing 1-5 of 5 results.