cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008905 Leading digit of n!.

Original entry on oeis.org

1, 1, 2, 6, 2, 1, 7, 5, 4, 3, 3, 3, 4, 6, 8, 1, 2, 3, 6, 1, 2, 5, 1, 2, 6, 1, 4, 1, 3, 8, 2, 8, 2, 8, 2, 1, 3, 1, 5, 2, 8, 3, 1, 6, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 7, 4, 2, 1, 8, 5, 3, 1, 1, 8, 5, 3, 2, 1, 1, 8, 6, 4, 3, 2, 1, 1, 1, 8, 7, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1
Offset: 0

Views

Author

Keywords

Comments

Kunoff proved that the distribution of terms of this sequence follows Benford's law, i.e., the asymptotic density of terms with value d (between 1 and 9) is log_10(1+1/d). - Amiram Eldar, Sep 23 2019

Crossrefs

Cf. A000966, A000142, A018799, A202021 (leading digit of (10^n)!), A213201.

Programs

  • Haskell
    a008905 = a000030 . a000142  -- Reinhard Zumkeller, Apr 08 2012
  • Mathematica
    f[n_] := Quotient[n!, 10^Floor@ Log[10, n!]]; Array[f, 105, 0]

Formula

a(n) = A000030(A000142(n)). - Reinhard Zumkeller, Apr 08 2012

Extensions

Two less-efficient Mathematica codings removed by Robert G. Wilson v, Nov 05 2010

A008963 Initial digit of Fibonacci number F(n).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 3, 6, 1, 1, 2, 4, 7, 1, 1, 2, 4, 7, 1, 2, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 4, 8, 1, 2, 3, 5, 8, 1, 2, 3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Benford's law applies since the Fibonacci sequence is of exponential growth: P(d)=log_10(1+1/d), in fact among first 5000 values the digit d=1 appears 1505 times, while 5000*P(1) is about 1505.15. - Carmine Suriano, Feb 14 2011
Wlodarski observed and Webb proved that the distribution of terms of this sequence follows Benford's law. - Amiram Eldar, Sep 23 2019

Crossrefs

Cf. A000045, A003893 (final digit).

Programs

  • Haskell
    a008963 = a000030 . a000045  -- Reinhard Zumkeller, Sep 09 2015
  • Maple
    F:= combinat[fibonacci]:
    a:= n-> parse(""||(F(n))[1]):
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 22 2023
  • Mathematica
    Table[IntegerDigits[Fibonacci[n]][[1]], {n, 0, 100}] (* T. D. Noe, Sep 23 2011 *)
  • PARI
    vector(10001,n,f=fibonacci(n-1);f\10^(#Str(f)-1))
    

Formula

a(n) = A000030(A000045(n)). - Amiram Eldar, Sep 23 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{d=1..9} d*log(1+1/d)/log(10) = 3.440236... (A213201). - Amiram Eldar, Jan 12 2023
For n>5, a(n) = floor(10^{alpha*n-beta}), where alpha=log_10(phi), beta=log_10(5)/2, {x}=x-floor(x) denotes the fractional part of x, log_10(phi) = A097348, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 20 2025

A346640 Decimal expansion of 2 - log_3(2).

Original entry on oeis.org

1, 3, 6, 9, 0, 7, 0, 2, 4, 6, 4, 2, 8, 5, 4, 2, 5, 6, 2, 9, 0, 0, 4, 7, 2, 8, 8, 5, 6, 5, 7, 2, 3, 9, 1, 4, 5, 7, 0, 0, 4, 1, 4, 3, 5, 9, 8, 6, 8, 1, 1, 9, 5, 7, 2, 1, 2, 9, 3, 4, 5, 0, 5, 6, 1, 6, 1, 3, 1, 4, 7, 9, 8, 6, 1, 9, 0, 8, 5, 1, 9, 4, 9, 3, 8, 8, 2, 7, 3, 1, 1, 4, 5, 0, 5, 4, 8, 2, 5, 4, 4, 3, 8, 6, 4
Offset: 1

Views

Author

Kevin Ryde, Jul 26 2021

Keywords

Comments

Bedford and McMullen show this is the metric dimension of Hironaka's curve and equivalent carpets (see A346639).

Examples

			1.3690702464285425629004728856572391...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2 - Log[3, 2], 10, 105][[1]] (* Amiram Eldar, Jul 27 2021 *)
  • PARI
    2 - log(2)/log(3) \\ Michel Marcus, Jul 27 2021

Formula

Equals 2 - A102525.
Equals Sum_{d=1..2} d*log(1+1/d)/log(3). Compare with A213201. - Michel Marcus, Dec 25 2022
Showing 1-3 of 3 results.