cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213684 Logarithmic derivative of A001002.

Original entry on oeis.org

1, 5, 22, 105, 511, 2534, 12720, 64449, 328900, 1688115, 8705060, 45064110, 234054198, 1219053680, 6364813192, 33302104593, 174570695175, 916628799380, 4820160541350, 25381091113455, 133808636072595, 706211862466500, 3730964595817680, 19729042153581150
Offset: 1

Views

Author

Paul D. Hanna, Jun 22 2012

Keywords

Comments

A001002(n) is the number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals.
The g.f. of A001002 satisfies: G(x) = 1 + x*G(x)^2 + x^2*G(x)^3.
Central terms in A155161: a(n) = A155161(2*n,n). - Reinhard Zumkeller, Apr 17 2013
a(n) is the 2n-th term of the n-fold self-convolution of the Fibonacci numbers. - Alois P. Heinz, Feb 07 2021

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 22*x^3/3 + 105*x^4/4 + 511*x^5/5 +...
such that
L(x) = x*(1+x) + d/dx x^3*(1+x)^2/2! + d^2/dx^2 x^5*(1+x)^3/3! + d^3/dx^3 x^7*(1+x)^4/4! +...
The g.f. of A001002 begins:
exp(L(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 154*x^5 + 654*x^6 +...
		

Crossrefs

Programs

  • Haskell
    a213684 n = a155161 (2*n) n  -- Reinhard Zumkeller, Apr 17 2013
  • Maple
    with(orthopoly): seq(add(i, i in [seq((-1)^iquo(n-k,2)*coeff(G(n,n,x/2), x, k), k=0..n)]), n=1..24); # Peter Luschny, Jan 26 2018
  • Mathematica
    Table[n*Sum[Binomial[k+n-1,n]*Binomial[k,n-k]/k,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=n*sum(r=1,n,binomial(r+n-1,n)*binomial(r,n-r)/r)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=(sum(m=1, n+1, Dx(m-1, x^(2*m-1)*(1+x)^m/m!)+x*O(x^n))); n*polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    

Formula

a(n) = n * Sum_{r=1..n} binomial(r+n-1,n) * binomial(r,n-r) / r.
L.g.f.: Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*(1+x)^n/n! = Sum_{n>=1} a(n)*x^n/n.
Recurrence: 75*(n-1)*n*a(n) = 5*(n-1)*(59*n-12)*a(n-1) + (559*n^2-1503*n+1100)* a(n-2) + 21*(3*n-8)*(3*n-7)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(3*n)/(2*5^(n-1/2)*sqrt(6*Pi*n)). - Vaclav Kotesovec, Oct 20 2012
a(n) = A037027(2*n-1,n-1). - Vladimir Kruchinin, Feb 28 2013
a(n) = Sum_{k=0..n} (-1)^floor((n-k)/2) [x^k] G(n,n,x/2), where G(n,a,x) denotes the n-th Gegenbauer polynomial; row sums of A298610. - Peter Luschny, Jan 26 2018
a(n) = [x^n] (1/(1-x-x^2))^n. - Alois P. Heinz, Feb 07 2021
From Peter Bala, Mar 11 2025: (Start)
a(n) = Sum_{k = 0..n} n/(2*n-k) * binomial(2*n-k, k)*binomial(2*n-2*k, n).
a(n) = (1/2)*binomial(2*n, n)*hypergeom([-n/2, (-n+1)/2], [-2*n+1], -4). Cf. A350383.
Second-order recurrence: 5*n*(n-1)*(8*n-13)*a(n) = 2*(n-1)*(88*n^2-187*n+75)*a(n-1) + 3*(8*n-5)*(3*n-4)*(3*n-5)*a(n-2) with a(1) = 1 and a(2) = 5. (End)