cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A214083 a(n) = floor(n!^(1/3)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 17, 34, 71, 153, 341, 782, 1839, 4434, 10935, 27555, 70852, 185686, 495486, 1344956, 3710632, 10397338, 29568648, 85290741, 249391641, 738821756, 2216465268, 6730493989, 20678209929, 64252006059, 201840008711, 640802084315
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 35, LOOP(IF(n = -1, RETURN y), y := ADJOIN(FLOOR(n!^(1/3)), y), n := n - 1))
    
  • Magma
    [Floor(Factorial(n)^(1/3)): n in [0..40]]; // Vincenzo Librandi, Feb 08 2013
    
  • Mathematica
    Table[Floor[n!^(1/3)], {n, 0, 60}] (* Vincenzo Librandi, Feb 08 2013 *)
  • PARI
    a(n) = sqrtnint(n!,3); \\ Michel Marcus, Jan 11 2016

A214078 a(n) = (ceiling (sqrt(n)))!.

Original entry on oeis.org

1, 1, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 120, 120, 120, 120, 120, 120, 120, 120, 120, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 40320, 40320, 40320
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 50, LOOP(IF(n = -1, RETURN y), y := ADJOIN(CEILING(SQRT(n))!, y), n := n - 1))
    
  • Magma
    [Factorial(Ceiling (Sqrt(n))): n in [0..50]]; // Vincenzo Librandi, Feb 13 2013
    
  • Mathematica
    Table[Ceiling[Sqrt[n]]!, {n, 0, 50}] (* T. D. Noe, Dec 23 2012 *)
  • PARI
    a(n) = ceil(sqrt(n))!; \\ Altug Alkan, Jan 11 2016
    
  • Python
    from math import factorial, isqrt
    def A214078(n): return factorial(1+isqrt(n-1)) if n else 1 # Chai Wah Wu, Jul 28 2022

Formula

a(n) = A000142(A003059(n)). - Michel Marcus, Jul 28 2022
Sum_{n>=0} 1/a(n) = e + 2. - Amiram Eldar, Aug 15 2022

A214079 a(n) = ceiling( n^(1/3) )!.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 120, 120, 120, 120, 120
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], x := 70, LOOP(IF(x = -1, RETURN y), y := ADJOIN(CEILING(x^(1/3))!, y), x := x - 1))
    
  • Magma
    [Factorial(Ceiling(n^(1/3))): n in [0..80]]; // Vincenzo Librandi, Feb 13 2013
    
  • Mathematica
    Table[Ceiling[n^(1/3)]!, {n, 0, 100}] (* T. D. Noe, Dec 23 2012 *)
    Ceiling[Surd[Range[0,70],3]]! (* Harvey P. Dale, Nov 19 2022 *)
  • PARI
    a(n) = ceil(n^(1/3))! \\ Altug Alkan, Jan 11 2016

Formula

Sum_{n>=0} 1/a(n) = 4*e. - Amiram Eldar, Aug 15 2022
a(n) = A000142(A134914(n)). - Michel Marcus, Aug 15 2022

A214081 a(n) = floor( n^(1/3) )!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 22 2012

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 70, LOOP(IF(n = -1, RETURN y), y := ADJOIN(FLOOR(n^(1/3))!, y), n := n - 1))
    
  • Magma
    [Factorial(Floor(n^(1/3))): n in [0..80]]; // Vincenzo Librandi, Feb 13 2013
    
  • Mathematica
    Table[Floor[n^(1/3)]!, {n, 0, 100}] (* T. D. Noe, Dec 23 2012 *)
    Floor[CubeRoot[Range[0,90]]]! (* Harvey P. Dale, Jan 15 2024 *)
  • PARI
    a(n) = floor(n^(1/3))!; \\ Altug Alkan, Jan 11 2016

Formula

Sum_{n>=0} 1/a(n) = 10*e. - Amiram Eldar, Aug 15 2022
a(n) = A000142(A048766(n)). - Michel Marcus, Aug 15 2022

A228729 Product of the positive squares less than or equal to n.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 4, 36, 36, 36, 36, 36, 36, 36, 576, 576, 576, 576, 576, 576, 576, 576, 576, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 14400, 518400, 518400, 518400, 518400, 518400, 518400, 518400, 518400, 518400, 518400
Offset: 1

Views

Author

Wesley Ivan Hurt, Aug 31 2013

Keywords

Comments

Squares of A214080, n > 0. Also, the n-th value of A001044 (The squared factorial numbers) repeated 2n+1 times, n > 0.
The first differences of a(n) are positive when n is a square (i.e., a(n+1) - a(n) > 0) and zero otherwise. This implies that the square characteristic (A010052) can be written in terms of a(n) as A010052(n) = signum(a(n+1) - a(n)), n > 1. Furthermore, the number of squares less than or equal to n is given by Sum_{i=1..n} sign(a(i+1) - a(i)), and the sum of the squares less than or equal to n is given by Sum_{i=2..n} i * sign(a(i+1) - a(i)).

Examples

			a(6) = 4 since there are two squares less than or equal to 6 (1 and 4) and their product is 1*4 = 4.
		

Crossrefs

Programs

  • Maple
    seq(product( (i)^(1 - ceil(sqrt(i)) + floor(sqrt(i))), i = 1..k ), k=1..100);
  • Mathematica
    Table[Times@@(Range[Floor[Sqrt[n]]]^2), {n, 50}] (* Alonso del Arte, Sep 01 2013 *)

Formula

a(n) = Product_{i=1..n} i^(1 - ceiling(frac(sqrt(i)))).
a(n) = A214080(n)^2, n > 0.
Sum_{n>=1} 1/a(n) = BesselI(0, 2) + 2*BesselI(1, 2) - 1. - Amiram Eldar, Aug 15 2025
Showing 1-5 of 5 results.