A061602 Sum of factorials of the digits of n.
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 2, 2, 3, 7, 25, 121, 721, 5041, 40321, 362881, 3, 3, 4, 8, 26, 122, 722, 5042, 40322, 362882, 7, 7, 8, 12, 30, 126, 726, 5046, 40326, 362886, 25, 25, 26, 30, 48, 144, 744, 5064, 40344, 362904, 121, 121, 122, 126
Offset: 0
Examples
a(24) = (2!) + (4!) = 2 + 24 = 26. a(153) = 127 because 1! + 5! + 3! = 1 + 120 + 6 = 127.
Links
- Harry J. Smith and Indranil Ghosh, Table of n, a(n) for n = 0..10000 (first 1001 terms from Harry J. Smith)
- Project Euler, Problem 74: Digit factorial chains
- H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.b.
- Eric Weisstein's World of Mathematics, Factorion.
Crossrefs
Programs
-
Magma
a061602:=func< n | n eq 0 select 1 else &+[ Factorial(d): d in Intseq(n) ] >; [ a061602(n): n in [0..60] ]; // Klaus Brockhaus, Nov 23 2010
-
Maple
A061602 := proc(n) add(factorial(d),d=convert(n,base,10)) ; end proc: # R. J. Mathar, Dec 18 2011
-
Mathematica
a[n_] := Total[IntegerDigits[n]! ]; Table[a[n], {n, 1, 53}] (* Saif Hakim (saif7463(AT)gmail.com), Apr 23 2006 *)
-
PARI
a(n) = { if(n==0, 1, my(d=digits(n)); sum(i=1, #d, d[i]!)) } \\ Harry J. Smith, Jul 25 2009
-
Python
import math def A061602(n): s=0 for i in str(n): s+=math.factorial(int(i)) return s # Indranil Ghosh, Jan 11 2017
-
R
i=0 values <- c() while (i<1000) { values[i+1] <- A061602(i) i=i+1 } plot(values) A061602 <- function(n) { sum=0; numberstring <- paste0(i) numberstring_split <- strsplit(numberstring, "")[[1]] for (number in numberstring_split) { sum = sum+factorial(as.numeric(number)) } return(sum) } # Raphaël Deknop, Nov 08 2021
Extensions
Corrected and extended by Vladeta Jovovic, May 19 2001
Link and amended comment by Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 12 2004
Comments