A361305
Expansion of A(x) satisfying A(x) = x + A(x)^2*(1 + A(x))^3.
Original entry on oeis.org
1, 1, 5, 23, 123, 700, 4170, 25677, 162101, 1043603, 6825429, 45222437, 302892681, 2047499720, 13950769772, 95710823820, 660609751890, 4584018016679, 31960334260971, 223782306725768, 1572921720684820, 11094267854522250, 78499108540111380, 557041048588402170
Offset: 1
G.f.: A(x) = x + x^2 + 5*x^3 + 23*x^4 + 123*x^5 + 700*x^6 + 4170*x^7 + 25677*x^8 + 162101*x^9 + 1043603*x^10 + ...
such that A(x) = x + A(x)^2 * (1 + A(x))^3.
Related series.
A(x)^2 = x^2 + 2*x^3 + 11*x^4 + 56*x^5 + 317*x^6 + 1876*x^7 + 11499*x^8 + 72352*x^9 + 464585*x^10 + ...
(1 + A(x))^3 = 1 + 3*x + 6*x^2 + 22*x^3 + 105*x^4 + 555*x^5 + 3151*x^6 + 18735*x^7 + 115200*x^8 + 726530*x^9 + ...
-
{a(n)=polcoeff(serreverse(x-x^2*(1+x)^3+x*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^(2*m)*(1+x+x*O(x^n))^(3*m)/m!)); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*(1+x+x*O(x^n))^(3*m)/m!))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A361306
Expansion of A(x) satisfying A(x) = x + A(x)^2*(1 + A(x))^4.
Original entry on oeis.org
1, 1, 6, 31, 186, 1191, 7972, 55164, 391322, 2830751, 20801826, 154853413, 1165316224, 8850372878, 67750780816, 522218420336, 4049564739054, 31570368061361, 247293510244174, 1945331619223591, 15361731119713506, 121729460653957980, 967664450692965300
Offset: 1
G.f.: A(x) = x + x^2 + 6*x^3 + 31*x^4 + 186*x^5 + 1191*x^6 + 7972*x^7 + 55164*x^8 + 391322*x^9 + ...
such that sqrt(A(x) - x) = A(x)*(1 + A(x))^2.
A(x)*(1 + A(x))^2 = x + 3*x^2 + 11*x^3 + 60*x^4 + 355*x^5 + 2261*x^6 + 15094*x^7 + 104208*x^8 + ...
A(x)*(1 + A(x))^2 = Series_Reversion( -x^2 + Sum_{n>=1} (-1)^(n-1) * binomial(3*n-2,n-1)*x^n/n ).
-
{a(n)=polcoeff(serreverse(x - x^2*(1+x)^4 +x*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^(2*m)*(1+x+x*O(x^n))^(4*m)/m!)); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*(1+x+x*O(x^n))^(4*m)/m!))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A215128
G.f.: Sum_{n>=0} d^n/dx^n (x + x^2)^(2*n) / n!.
Original entry on oeis.org
1, 2, 12, 64, 370, 2184, 13132, 79944, 491238, 3040400, 18926336, 118369368, 743199184, 4681668488, 29574616440, 187281906512, 1188494457492, 7556371963488, 48123031011036, 306929964849200, 1960230225450420, 12534313062502440, 80236414444623240
Offset: 0
G.f.: A(x) = 1 + 2*x + 12*x^2 + 64*x^3 + 370*x^4 + 2184*x^5 + 13132*x^6 +...
such that, by definition:
A(x) = 1 + d/dx (x+x^2)^2 + d^2/dx^2 (x+x^2)^4/2! + d^3/dx^3 (x+x^2)^6/3! + d^4/dx^4 (x+x^2)^8/4! + d^5/dx^5 (x+x^2)^10/5! +...
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=1+sum(m=1, n, Dx(m, x^(2*m)*(1+x+x*O(x^n))^(2*m)/m!)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A229042
Series reversion of (sqrt(1+4*x) - 1)/2 - x^2.
Original entry on oeis.org
1, 2, 6, 25, 114, 560, 2880, 15321, 83600, 465322, 2631668, 15079922, 87362184, 510837760, 3010987912, 17870854206, 106713713826, 640659094566, 3864643224900, 23412690485800, 142386465217920, 868967571732540, 5320093500153120, 32666064906596550, 201109232686971492
Offset: 1
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 25*x^4 + 114*x^5 + 560*x^6 + 2880*x^7 +...
where the series reversion of g.f. A(x) begins:
(sqrt(1+4*x) - 1)/2 - x^2 = x - 2*x^2 + 2*x^3 - 5*x^4 + 14*x^5 - 42*x^6 + 132*x^7 - 429*x^8 +...+ (-1)^(n-1)*A000108(n-1)*x^n +...
The square of the g.f. equals the series:
A(x)^2 = x^2*(1+x)^2 + d/dx x^4*(1+x)^4/2! + d^2/dx^2 x^6*(1+x)^6/3! + d^3/dx^3 x^8*(1+x)^8/4! + d^4/dx^4 x^10*(1+x)^10/5! +...
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 74*x^5 + 364*x^6 + 1876*x^7 + 9993*x^8 +...
Related Expansions:
G.f. A(x) = G(x) + G(x)^2 = sqrt(G(x) - x) where G(x) is the g.f. of A214372:
G(x) = x + x^2 + 4*x^3 + 16*x^4 + 74*x^5 + 364*x^6 + 1876*x^7 + 9993*x^8 +...
-
Rest[CoefficientList[InverseSeries[Series[(Sqrt[1+4*x]-1)/2-x^2,{x,0,20}],x],x]] (* Vaclav Kotesovec, Jan 22 2014 *)
-
a(n):=binomial(2*(n-1),(n-1))/n-sum(k*(-1)^(k-n)*binomial(n+k-1,n-1)*((sum((binomial(k-1,l)*binomial(2*(n+l-k),n-k-1))/(n+l-k),l,0,k-1))),k,1,n-1)/n; /* Vladimir Kruchinin, Feb 08 2015 */
-
{a(n)=polcoeff( serreverse( (sqrt(1+4*x +x*O(x^n)) - 1)/2 - x^2 ), n)}
for(n=1, 30, print1(a(n), ", "))
-
/* G.f. A(x) = sqrt(G(x) - x) where G(x) = x + G(x)^2*(1 + G(x))^2 */
{a(n)=local(G=serreverse(x-x^2*(1+x)^2+x^2*O(x^n)));polcoeff(sqrt(G-x),n)}
for(n=1, 30, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ n-th derivative
{a(n)=local(A2=x); A2=sum(m=1, n, Dx(m-1, x^(2*m)*(1+x+x*O(x^n))^(2*m)/m!)); polcoeff(sqrt(A2), n)}
for(n=1, 30, print1(a(n), ", "))
A361304
Expansion of g.f. A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * (1 + x)^(4*n) / n!.
Original entry on oeis.org
1, 2, 18, 124, 930, 7146, 55804, 441312, 3521898, 28307510, 228820086, 1858240956, 15149110912, 123905220292, 1016261712240, 8355494725376, 68842600563918, 568266625104498, 4698576694639306, 38906632384471820, 322596353513983626, 2678048134387075560
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 124*x^3 + 930*x^4 + 7146*x^5 + 55804*x^6 + 441312*x^7 + 3521898*x^8 + 28307510*x^9 + ...
-
{Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=1); A = sum(m=0, n, Dx(m, x^(2*m)*(1+x +O(x^(n+1)))^(4*m)/m!)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Using series reversion (faster) */
{a(n) = my(A=1); A = deriv( serreverse(x - x^2*(1+x +O(x^(n+3)))^4 )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A367282
G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^2)^2.
Original entry on oeis.org
1, 1, 4, 18, 94, 527, 3108, 18993, 119214, 763997, 4978304, 32883853, 219690066, 1481858835, 10078051830, 69030877581, 475795428158, 3297527987794, 22965847261928, 160649189379029, 1128201207643744, 7951399289858530, 56222323349767666
Offset: 0
-
a(n, s=2, t=2, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
A365155
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^2 )^2.
Original entry on oeis.org
1, 2, 13, 98, 838, 7690, 74047, 738028, 7549658, 78811732, 836219773, 8991739874, 97769604542, 1073156173442, 11875174074608, 132333387616600, 1483789788291516, 16727705523572128, 189496296040063170, 2155984626357225948, 24625450759174328948
Offset: 0
-
a(n, s=2, t=2) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));
A365156
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^2 )^3.
Original entry on oeis.org
1, 3, 27, 295, 3648, 48513, 677450, 9797031, 145458252, 2204380144, 33960095667, 530268482913, 8373331428836, 133484219528982, 2145376940485452, 34725549386905863, 565567039020594492, 9261756210015412356, 152410211630410153468
Offset: 0
-
a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));
A367259
G.f. satisfies A(x) = 1 + x*A(x)^3 * (1 + x*A(x))^2.
Original entry on oeis.org
1, 1, 5, 27, 169, 1138, 8061, 59188, 446455, 3438863, 26935372, 213883631, 1717852129, 13931065117, 113913095218, 938154381748, 7774936633411, 64791892224825, 542598513709481, 4564001359135661, 38541714429405304, 326640923339410701
Offset: 0
-
A367259 := proc(n)
add(binomial(3*k+(n-k)+1,k) * binomial(2*k,n-k) / (3*k+(n-k)+1),k=0..n) ;
end proc:
seq(A367259(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a(n, s=2, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
A367283
G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^3)^2.
Original entry on oeis.org
1, 1, 4, 20, 116, 728, 4818, 33100, 233824, 1687764, 12393520, 92291681, 695325926, 5290359124, 40591599128, 313725215636, 2440203573816, 19087022233906, 150042056387660, 1184734863936672, 9392213303130904, 74728563957003952, 596531545003840160
Offset: 0
-
a(n, s=2, t=2, u=3) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
Showing 1-10 of 10 results.
Comments