A214733 a(n) = -a(n-1) - 3*a(n-2) with n>1, a(0)=0, a(1)=1.
0, 1, -1, -2, 5, 1, -16, 13, 35, -74, -31, 253, -160, -599, 1079, 718, -3955, 1801, 10064, -15467, -14725, 61126, -16951, -166427, 217280, 282001, -933841, 87838, 2713685, -2977199, -5163856, 14095453, 1396115, -43682474, 39494129, 91553293, -210035680
Offset: 0
References
- Roman Witula, On Some Applications of Formulae for Unimodular Complex Numbers, Jacek Skalmierski's Press, Gliwice 2011.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..4189
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Wikipedia, Lucas sequence
- Index entries for linear recurrences with constant coefficients, signature (-1,-3).
Programs
-
Magma
[n le 2 select n-1 else -Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 10 2015
-
Mathematica
LinearRecurrence[{-1, -3}, {0, 1}, 40] (* T. D. Noe, Jul 30 2012 *)
-
PARI
concat(0,Vec(1/(1+x+3*x^2)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
-
SageMath
[(-1)^(n-1)*round(3^((n-1)/2)*chebyshev_U(n-1, 1/(2*sqrt(3)))) for n in range(41)] # G. C. Greubel, Dec 28 2023
Formula
a(n) = - a(n-1) - 3*a(n-2).
a(n) = (-1)^n*(i*sqrt(11)/11)*(((1 + i*sqrt(11))/2)^n - ((1 - i*sqrt(11))/2)^n).
G.f.: x/(1 + x + 3*x^2).
G.f.: Q(0) -1, where Q(k) = 1 - 3*x^2 - (k+2)*x + x*(k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
From G. C. Greubel, Dec 28 2023: (Start)
a(n) = (-1)^(n-1)*3^((n-1)/2)*ChebyshevU(n-1, 1/(2*sqrt(3))).
a(n) = (-1)^n * A106852(n-1).
E.g.f.: (2/sqrt(11))*exp(-x/2)*sin(sqrt(11)*x/2). (End)
Comments