cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A214949 Numerator of sum of reciprocals of all nonzero digits of n in decimal representation.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 3, 1, 5, 3, 7, 2, 9, 5, 11, 1, 4, 5, 2, 7, 8, 1, 10, 11, 4, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 1, 7, 2, 1, 5, 11, 1, 13, 7, 5, 1, 8, 9, 10, 11, 12, 13, 2, 15, 16
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 02 2012

Keywords

Crossrefs

Cf. A214950 (denominators).

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a214949 = f 0 where
       f y 0 = numerator y
       f y x = f (y + if d == 0 then 0 else 1 % d) x'
               where (x',d) = divMod x 10
    
  • Mathematica
    nsr[n_] := Numerator[Total[1/Select[IntegerDigits[n], # > 0 &]]]; nsr /@ Range[0, 79] (* Jayanta Basu, Jul 13 2013 *)
  • PARI
    a(n) = my(d=digits(n)); numerator(sum(k=1, #d, if (d[k], 1/d[k]))); \\ Michel Marcus, Jan 26 2022

Formula

a(A037264(n)) = a(A037268(n)) = a(A214958(n)) = a(A214959(n)) = 1;
a(n) = a(A004719(n)).

A037264 Numbers whose sum of reciprocals of digits is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 44, 63, 66, 88, 236, 244, 263, 326, 333, 362, 424, 442, 488, 623, 632, 666, 848, 884, 999, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336
Offset: 1

Views

Author

Keywords

Comments

Intersection of A214958 and A052382: A214949(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012

Examples

			63 is a term: 1/((1/6) + (1/3)) = 2.
		

Crossrefs

Programs

  • Haskell
    a037264 n = a037264_list !! (n-1)
    a037264_list = filter ((== 1) . a168046) $
                          takeWhile (<= 999999999) a214958_list
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Mathematica
    Reap[Do[If[FreeQ[id = IntegerDigits[n], 0], If[IntegerQ[1/Total[1/id]], Sow[n]]], {n, 1, 10^4}]][[2, 1]] (* Jean-François Alcover, Dec 15 2015 *)
    Select[Range[6500],FreeQ[IntegerDigits[#],0]&&IntegerQ[1/Total[1/IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 29 2024 *)
  • PARI
    isok(n) = {my(d=digits(n)); vecmin(d) && (numerator(sum(k=1, #d, 1/d[k])) == 1);} \\ Michel Marcus, May 24 2018
    
  • Python
    from fractions import Fraction
    def ok(n):
        ds = list(map(int, str(n)))
        return 0 not in ds and sum(Fraction(1, d) for d in ds).numerator == 1
    print(list(filter(ok, range(1, 6337)))) # Michael S. Branicky, Aug 08 2021

A214959 Numbers for which the sum of reciprocals of nonzero digits = 1.

Original entry on oeis.org

1, 10, 22, 100, 202, 220, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 1000, 2002, 2020, 2036, 2044, 2063, 2200, 2306, 2360, 2404, 2440, 2488, 2603, 2630, 2666, 2848, 2884, 3026, 3033, 3062, 3206, 3260, 3303, 3330, 3366, 3446, 3464, 3602, 3620, 3636
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 02 2012

Keywords

Comments

Intersection of A214957 and A214958: A214949(a(n))*A214950(a(n)) = 1.

Crossrefs

Cf. A037268 (subsequence).

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator)
    a214959 n = a214959_list !! (n-1)
    a214959_list = [x | x <- [0..], f x 0] where
       f 0 v = numerator v == 1 && denominator v == 1
       f u v | d > 0     = f u' (v + 1 % d)
             | otherwise = f u' v  where (u',d) = divMod u 10
    
  • Magma
    SumReciprocalsDigits:=func; [n: n in [1..3636] | IsOne(SumReciprocalsDigits(n))]; // Bruno Berselli, Aug 02 2012
  • Mathematica
    idnQ[n_]:=Total[1/Select[IntegerDigits[n],#>0&]]==1; Select[Range[ 4000],idnQ] (* Harvey P. Dale, Dec 08 2012 *)
Showing 1-3 of 3 results.