cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A042944 Curvatures in diagram constructed by inscribing 2 circles of curvature 2 inside circle of curvature -1, continuing indefinitely to inscribe circles wherever possible.

Original entry on oeis.org

-1, 2, 3, 6, 11, 14, 15, 18, 23, 26, 27, 30, 35, 38, 39, 42, 47, 50, 51, 54, 59, 62, 63, 66, 71, 74, 75, 83, 86, 87, 90, 95, 98, 99, 102, 107, 110, 111, 114, 119, 122, 123, 126, 131, 134, 135, 138, 143, 146, 147, 150, 155, 158, 162, 167, 170, 171, 174, 179, 182, 183
Offset: 1

Views

Author

Keywords

Comments

The sequence seems to follow a pattern where differences between consecutive terms are 3,1,3,5,3,1,3,5,..., which would give A218155. However, some curvatures (starting with 78, listed in A042945) are in that sequence, but missing from the circle diagram.

References

  • Clifford A. Pickover, The Mathematics of OZ, Mental Gymnastics From Beyond The Edge, Cambridge University Press, Chapter 104 'Circle Mathematics,' figure courtesy of Allan Wilks, Cambridge, UK, 2002, pages 219-220.

Crossrefs

A189226 Curvatures in the nickel-dime-quarter Apollonian circle packing, ordered first by generation and then by size.

Original entry on oeis.org

-11, 21, 24, 28, 40, 52, 61, 157, 76, 85, 96, 117, 120, 132, 181, 213, 237, 376, 388, 397, 132, 156, 160, 189, 204, 205, 216, 237, 253, 285, 288, 309, 316, 336, 349, 405, 412, 421, 453, 460, 469, 472, 517, 544, 565, 616, 628, 685, 717, 741, 1084, 1093, 1104, 1125, 1128, 1140
Offset: 1

Views

Author

Jonathan Sondow, Apr 18 2011

Keywords

Comments

For a circle, curvature = 1/radius. The curvatures of a quarter, nickel, and dime are approximately proportional to 21, 24, and 28, respectively. Three mutually tangent circles with curvatures 21, 24, 28 can be inscribed in a circle of curvature 11.
Apollonius's and Descartes's Theorems say that, given three mutually tangent circles of curvatures a, b, c, there are exactly two circles tangent to all three, and their curvatures are a + b + c +- 2*sqrt(ab + ac + bc). (Here negative curvature of one of the two circles means that the three circles are inscribed in it.)
Fuchs (2009) says "An Apollonian circle packing ... is made by repeatedly inscribing circles into the triangular interstices in a Descartes configuration of four mutually tangent circles. Remarkably, if the original four circles have integer curvature, all of the circles in the packing will have integer curvature as well." That is because if a + b + c - 2s*qrt(ab + ac + bc) is an integer, then so is a + b + c + 2*sqrt(ab + ac + bc).
For n > 1, the n-th generation of the packing has 4*3^(n-2) circles.
Infinitely many of the curvatures are prime numbers A189227. In fact, in any integral Apollonian circle packing that is primitive (i.e., the curvatures have no common factor), the prime curvatures constitute a positive fraction of all primes (Bourgain 2012) and there are infinitely many pairs of tangent circles both of whose curvatures are prime (Sarnak 2007, 2011).
Fuchs and Sanden (2012) report on experiments with the nickel-dime-quarter Apollonian circle packing, which they call the coins packing P_C.

Examples

			The 1st-generation curvatures are -11, 21, 24, 28, the 2nd are 40, 52, 61, 157, and the 3rd are 76, 85, 96, 117, 120, 132, 181, 213, 237, 376, 388, 397. The 4th generation begins 132, 156, 160, 189, 204, 205, 216, ....
As 21 + 24 + 28 +- 2*sqrt(21*24 + 21*28 + 24*28) = 157 or -11, the sequence begins -11, 21, 24, 28, ... and 157 is in it.
The primes 157 and 397 are the curvatures of two circles that are tangent.
		

Crossrefs

Programs

  • Mathematica
    root = {-11, 21, 24, 28};
    triples = Subsets[root, {3}];
    a = {root};
    Do[
      ng = Table[Total@t + 2 Sqrt@Total[Times @@@ Subsets[t, {2}]], {t, triples}];
      AppendTo[a, Sort@ng];
      triples = Join @@ Table[{t, r} = tr; Table[Append[p, r], {p, Subsets[t, {2}]}], {tr, Transpose@{triples, ng}}]
      , {k, 3}];
    Flatten@a (* Andrey Zabolotskiy, May 29 2022 *)

Formula

a(n) == 0, 4, 12, 13, 16, or 21 (mod 24).

Extensions

Terms a(28) and beyond from Andrey Zabolotskiy, May 29 2022

A108752 Numbers k such that 12 divides k*(k+1).

Original entry on oeis.org

0, 3, 8, 11, 12, 15, 20, 23, 24, 27, 32, 35, 36, 39, 44, 47, 48, 51, 56, 59, 60, 63, 68, 71, 72, 75, 80, 83, 84, 87, 92, 95, 96, 99, 104, 107, 108, 111, 116, 119, 120, 123, 128, 131, 132, 135, 140, 143, 144, 147, 152, 155, 156, 159, 164, 167, 168, 171, 176, 179, 180
Offset: 1

Views

Author

Robert Phillips (bobp(AT)usca.edu), Jun 23 2005

Keywords

Comments

First differences are 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, ..., . - Robert G. Wilson v, May 31 2017
Numbers that are congruent to {0, 3, 8, 11} mod 12. - Amiram Eldar, Jul 26 2024

Crossrefs

Programs

  • Magma
    [3*n-2-(-1)^((2*n-3-(-1)^n) div 4): n in [1..80]]; // Vincenzo Librandi, May 04 2017
  • Maple
    a:= proc(n) if is(n*(n+1)/12, integer) then n fi end: seq(a(n), n=0..200); # Emeric Deutsch, Jun 25 2005
  • Mathematica
    Select[ Range[0, 182], Mod[ #(# + 1), 12] == 0 &] (* Robert G. Wilson v, Jun 25 2005 *)
    LinearRecurrence[{2, -2, 2, -1}, {0, 3, 8, 11}, 200] (* Vincenzo Librandi, Jun 04 2017 *)

Formula

From R. J. Mathar, Jan 07 2009: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) = A016777(n) - A057077(n).
G.f.: x*(3 + 2*x + x^2)/((1 + x^2)*(1 - x)^2). (End)
a(n) = 3*n - 2 - (-1)^((2*n-3-(-1)^n)/4). - Luce ETIENNE, Apr 04 2015
Sum_{n>=2} 1/a(n) = log(2)/2 + arccoth(sqrt(3))/(2*sqrt(3)) - Pi*(3+2*sqrt(3))/72. - Amiram Eldar, Jul 26 2024

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Jun 25 2005

A294510 Residues modulo 24 of curvatures in the Apollonian circle packing A042944.

Original entry on oeis.org

2, 3, 6, 11, 14, 15, 18, 23
Offset: 1

Views

Author

Jonathan Sondow, Nov 16 2017

Keywords

Comments

Fuchs and Sanden proved that all curvatures in the Apollonian circle packing -1, 2, 3, 6 are congruent mod 24 to either 2, 3, 6, 11, 14, 15, 18, or 23.
Additional comments and links are in A189226.

Crossrefs

Showing 1-4 of 4 results.