cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A180278 Smallest nonnegative integer k such that k^2 + 1 has exactly n distinct prime factors.

Original entry on oeis.org

0, 1, 3, 13, 47, 447, 2163, 24263, 241727, 2923783, 16485763, 169053487, 4535472963, 36316463227, 879728844873, 4476534430363, 119919330795347, 1374445897718223, 106298577886531087
Offset: 0

Views

Author

Michel Lagneau, Jan 17 2011

Keywords

Examples

			a(2) = 3 because the 2 distinct prime factors of 3^2 + 1 are {2, 5};
a(10) = 16485763 because the 10 distinct prime factors of 16485763^2 + 1 are {2, 5, 13, 17, 29, 37, 41, 73, 149, 257}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{k = 1}, If[n == 0, Return[0]]; Monitor[While[PrimeNu[k^2 + 1] != n, k++]; k, {n, k}]]; Table[a[n], {n, 0, 8}] (* Robert P. P. McKone, Sep 13 2023 *)
  • PARI
    a(n)=for(k=0, oo, if(omega(k^2+1) == n, return(k))) \\ Andrew Howroyd, Sep 12 2023
  • Python
    from itertools import count
    from sympy import factorint
    def A180278(n):
        return next(k for k in count() if len(factorint(k**2+1)) == n) # Pontus von Brömssen, Sep 12 2023
    

Formula

a(n) >= sqrt(A185952(n)-1). - Charles R Greathouse IV, Feb 17 2015
a(n) <= A164511(n). - Daniel Suteu, Feb 20 2023

Extensions

a(9), a(10) and example corrected; a(11) added by Donovan Johnson, Aug 27 2012
a(12) from Giovanni Resta, May 10 2017
a(13)-a(17) from Daniel Suteu, Feb 20 2023
Name clarified and incorrect programs removed by Pontus von Brömssen, Sep 12 2023
a(18) from Max Alekseyev, Feb 24 2024

A356872 a(n) = k is the smallest number such that 3*k+1 contains n distinct prime factors.

Original entry on oeis.org

1, 3, 23, 303, 4363, 56723, 1077743, 33410043, 718854803, 22284498903, 824526459423, 35454637755203, 1588862487308763, 68321086954276823, 4167586304210886223, 213640038906023626563, 13032042373267441220363, 873146839008918561764343, 63739719247651055008797063
Offset: 1

Views

Author

Alex Ratushnyak, Sep 02 2022

Keywords

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    from itertools import count, islice
    def f(n): return 1 if isprime(n) else len(factorint(n))
    def agen():
        n = 1
        for k in count(0):
            v = f(3*k+1)
            while v >= n: yield k; n += 1
    print(list(islice(agen(), 7))) # Michael S. Branicky, Sep 02 2022

Formula

From Michael S. Branicky, Sep 02 2022: (Start)
a(n) >= ceiling((A002110(n)-1)/3).
a(n) <= (c*A002110(n+1)/3-1)/3 for n > 1, and c = 1 or 2 chosen so the expression is an integer, with equality holding for c = 1 for n = 2, 3, 6, 7, ... . (End)

Extensions

a(8) from Michael S. Branicky, Sep 02 2022
a(9)-a(19) from Jon E. Schoenfield, Sep 02 2022

A356873 a(n) is the smallest number k such that 2^k+1 has at least n distinct prime factors.

Original entry on oeis.org

0, 5, 14, 18, 30, 42, 78, 78, 78, 90, 150, 150, 210, 210, 234, 234, 270, 390, 390, 390, 390, 450, 510, 630, 630, 630, 810, 810, 810, 966, 966, 1170, 1170, 1170, 1170, 1170, 1170, 1170
Offset: 1

Views

Author

Alex Ratushnyak, Sep 02 2022

Keywords

Comments

From Jon E. Schoenfield, Sep 04 2022: (Start)
a(39) <= a(40) <= a(41) <= 1530.
a(42) <= a(43) <= a(44) <= 1890.
a(45) <= a(46) <= 2070.
a(47) <= a(48) <= ... <= a(54) = 2730. (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=0}, While[ Length@ FactorInteger[2^k + 1] < n, k++]; k]; Array[a, 12] (* Giovanni Resta, Oct 13 2022 *)
  • PARI
    a(n) = my(k=1); while (omega(2^k+1) < n, k++); k; \\ Michel Marcus, Sep 05 2022
  • Python
    from sympy import factorint, isprime
    from itertools import count, islice
    def f(n): return 1 if isprime(n) else len(factorint(n))
    def agen():
        n = 1
        for k in count(0):
            v = f(2**k+1)
            while v >= n: yield k; n += 1
    print(list(islice(agen(), 10))) # Michael S. Branicky, Sep 02 2022
    

Extensions

a(11)-a(38) from Michael S. Branicky, Sep 02 2022 using A071852
Showing 1-3 of 3 results.