cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A167289 Signature sequence of the smallest Salem number of degree 18 (A219300).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 8, 1, 7, 6, 5, 4, 3, 9, 2, 8, 1, 7, 6, 5, 4, 10, 3, 9, 2, 8, 1, 7, 6, 5, 11, 4, 10, 3, 9, 2, 8, 1, 7, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8, 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 2, 8, 14, 1, 7, 13, 6, 12, 5, 11, 4, 10, 3, 9, 15
Offset: 1

Views

Author

Roger L. Bagula, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a = {1, -1, 1, -1, 0, 0, -1, 1, -1};
    b = Join[a, {1}, Reverse[a]];
    p[x_] = Sum[b[[n]]*x^(n - 1), {n, 1, Length[b]}];
    m = Root[p[x], 2];
    Take[Transpose[Sort[Flatten[Table[{i + j*m, i}, {i, 25}, {j, 17}], 1], #1[[1]] < #2[[1]] &]][[2]], 95]

A173911 Expansion of 1/(1 - x + x^2 - x^3 - x^6 + x^7 - x^8 + x^9 - x^10 + x^11 - x^12 -x^15 + x^16 - x^17 + x^18).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 23, 28, 33, 39, 46, 55, 66, 78, 92, 110, 131, 155, 184, 219, 260, 309, 368, 437, 519, 617, 733, 871, 1036, 1231, 1462, 1737, 2065, 2454, 2916, 3465, 4118, 4894, 5816, 6911, 8213
Offset: 0

Views

Author

Roger L. Bagula, Nov 26 2010

Keywords

Comments

Limiting ratio is 1.188368147508223588... = A219300.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(1/(1-x+x^2-x^3-x^6+x^7-x^8+x^9-x^10+x^11-x^12-x^15+x^16-x^17+x^18))); // G. C. Greubel, Nov 03 2018
    
  • Maple
    seq(coeff(series(1/(1-x+x^2-x^3-x^6+x^7-x^8+x^9-x^10+x^11-x^12-x^15+x^16 -x^17+x^18), x, n+1), x, n), n = 0..50); # G. C. Greubel, Dec 15 2019
  • Mathematica
    CoefficientList[Series[1/(1-x+x^2-x^3-x^6+x^7-x^8+x^9-x^10+x^11-x^12-x^15+x^16 -x^17+x^18), {x,0,50}], x]
    LinearRecurrence[{1,-1,1,0,0,1,-1,1,-1,1,-1,1,0,0,1,-1,1,-1},{1,1,0,0,1,1,1,1,1,1,2,2,2,3,4,4,5,6},60] (* Harvey P. Dale, Apr 02 2024 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1-x+x^2-x^3-x^6+x^7-x^8+x^9-x^10+x^11-x^12-x^15+ x^16-x^17+x^18)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    def A173911_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x+x^2-x^3-x^6+x^7-x^8+x^9-x^10+x^11-x^12-x^15+x^16 -x^17+x^18) ).list()
    A173911_list(50) # G. C. Greubel, Dec 15 2019

Formula

a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-6) - a(n-7) + a(n-8) - a(n-9) + a(n-10) - a(n-11) + a(n-12) + a(n-15) - a(n-16) + a(n-17) - a(n-16). - Franck Maminirina Ramaharo, Nov 02 2018

A306078 Decimal expansion of the third smallest known Salem number.

Original entry on oeis.org

1, 2, 0, 0, 0, 2, 6, 5, 2, 3, 9, 8, 7, 3, 9, 1, 5, 1, 8, 9, 0, 2, 9, 6, 2, 1, 0, 0, 4, 1, 4, 6, 0, 1, 5, 6, 7, 2, 4, 0, 6, 1, 8, 1, 5, 1, 9, 9, 9, 8, 5, 1, 0, 6, 7, 9, 2, 4, 3, 9, 9, 8, 3, 9, 8, 8, 6, 0, 7, 3, 1, 1, 3, 4, 4, 2, 5, 2, 4, 0, 9, 6, 4, 4, 2, 4, 6, 1, 7, 2, 7, 8, 8, 4, 9, 6, 9, 9, 1, 0
Offset: 1

Views

Author

Jean-François Alcover, Jun 19 2018

Keywords

Examples

			1.200026523987391518902962100414601567240618151999851067924399839886...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306079 (sigma4).

Programs

  • Mathematica
    c1 = {1, 0, 0, -1, -1, 0, 0, 1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2]-1]). c2;
    sigma3 = Root[p, x, 2];
    RealDigits[sigma3, 10, 100][[1]]
  • PARI
    polrootsreal(x^14 - x^11 - x^10 + x^7 - x^4 - x^3 + 1)[2] \\ Charles R Greathouse IV, Feb 11 2025

A306079 Decimal expansion of the fourth smallest known Salem number.

Original entry on oeis.org

1, 2, 0, 2, 6, 1, 6, 7, 4, 3, 6, 8, 8, 6, 0, 4, 2, 6, 1, 1, 1, 8, 2, 9, 5, 4, 1, 5, 9, 4, 8, 6, 1, 9, 0, 4, 5, 3, 4, 3, 9, 4, 9, 8, 3, 4, 9, 6, 9, 5, 2, 3, 0, 4, 3, 6, 8, 5, 3, 0, 9, 5, 7, 6, 7, 2, 6, 4, 5, 4, 0, 6, 5, 8, 7, 6, 3, 6, 5, 5, 5, 3, 7, 7, 2, 6, 7, 1, 0, 8, 0, 0, 5, 5, 1, 8, 2, 6, 5, 7, 6, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 19 2018

Keywords

Examples

			1.20261674368860426111829541594861904534394983496952304368530957672645...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3).

Programs

  • Mathematica
    c1 = {1, 0, -1, 0, 0, 0, 0, -1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2]-1]).c2;
    sigma4 = Root[p, x, 2];
    RealDigits[sigma4, 10, 102][[1]]
  • PARI
    polrootsreal(x^14 - x^12 - x^7 - x^2 + 1)[2] \\ Charles R Greathouse IV, Feb 11 2025

A316605 Decimal expansion of the fifth smallest known Salem number.

Original entry on oeis.org

1, 2, 1, 6, 3, 9, 1, 6, 6, 1, 1, 3, 8, 2, 6, 5, 0, 9, 1, 6, 2, 6, 8, 0, 6, 3, 1, 1, 1, 9, 9, 4, 6, 3, 3, 2, 7, 7, 2, 2, 2, 5, 3, 6, 0, 6, 5, 7, 0, 5, 7, 0, 7, 5, 7, 5, 6, 0, 4, 2, 7, 0, 6, 5, 8, 3, 8, 3, 1, 2, 1, 2, 9, 4, 6, 1, 8, 4, 9, 5, 9, 4, 4, 2, 6, 3, 7, 9, 6, 6, 6, 7, 0, 9, 5, 4, 3, 9, 5, 4, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Jul 08 2018

Keywords

Examples

			1.21639166113826509162680631119946332772225360657057075756042706583831...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3), A306079 (sigma4), A316606 (sigma6), A316607 (sigma7), A316608 (sigma8), A316609 (sigma9), A316610 (sigma10).

Programs

  • Mathematica
    c1 = {1, 0, 0, 0, -1, -1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2] - 1]).c2;
    sigma5 = Root[p, x, 2];
    RealDigits[sigma5, 10, 102][[1]]
  • PARI
    polrootsreal(1 - x^4 - x^5 - x^6 + x^10)[2] \\ Charles R Greathouse IV, Feb 11 2025

Formula

p = 1 - x^4 - x^5 - x^6 + x^10.

A316606 Decimal expansion of the sixth smallest known Salem number.

Original entry on oeis.org

1, 2, 1, 9, 7, 2, 0, 8, 5, 9, 0, 4, 0, 3, 1, 1, 8, 4, 4, 1, 6, 9, 6, 0, 6, 7, 6, 0, 4, 1, 4, 6, 7, 7, 9, 4, 4, 3, 9, 0, 4, 1, 5, 5, 0, 5, 5, 4, 1, 5, 6, 9, 6, 7, 8, 2, 8, 7, 9, 7, 4, 4, 1, 7, 8, 7, 3, 3, 8, 4, 6, 4, 5, 9, 9, 0, 8, 3, 9, 0, 6, 5, 8, 3, 5, 5, 3, 9, 3, 2, 0, 7, 8, 5, 1, 6, 2, 5, 9, 5, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, Jul 08 2018

Keywords

Examples

			1.219720859040311844169606760414677944390415505541569678287974417873...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3 ), A306079 (sigma4), A316605 (sigma5), A316607 (sigma7), A316608 (sigma8), A316609 (sigma9), A316610 (sigma10).

Programs

  • Mathematica
    c1 = {1, -1, 0, 0, 0, 0, 0, 0, -1, 1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2] - 1]).c2;
    sigma6 = Root[p, x, 2];
    RealDigits[sigma6, 10, 102][[1]]
  • PARI
    polrootsreal(1 - x - x^8 + x^9 - x^10 - x^17 + x^18)[2] \\ Charles R Greathouse IV, Feb 11 2025

Formula

Equals root of p = 1 - x - x^8 + x^9 - x^10 - x^17 + x^18 with largest absolute value.

A316607 Decimal expansion of the seventh smallest known Salem number.

Original entry on oeis.org

1, 2, 3, 0, 3, 9, 1, 4, 3, 4, 4, 0, 7, 2, 2, 4, 7, 0, 2, 7, 9, 0, 1, 7, 7, 9, 3, 8, 9, 7, 5, 2, 7, 9, 0, 1, 7, 5, 6, 6, 5, 7, 4, 4, 8, 9, 6, 6, 1, 7, 5, 6, 2, 4, 1, 4, 0, 1, 9, 1, 4, 2, 3, 6, 1, 7, 2, 8, 1, 3, 4, 4, 7, 8, 5, 3, 5, 4, 5, 4, 1, 6, 7, 3, 5, 9, 8, 4, 6, 5, 1, 6, 6, 2, 4, 0, 8, 5, 2, 8, 5, 6
Offset: 1

Views

Author

Jean-François Alcover, Jul 08 2018

Keywords

Examples

			1.2303914344072247027901779389752790175665744896617562414019142361728...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3 ), A306079 (sigma4), A316605 (sigma5), A316606 (sigma6), A316608 (sigma8), A316609 (sigma9), A316610 (sigma10).

Programs

  • Mathematica
    c1 = {1, 0, 0, -1, 0, -1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2] - 1]).c2;
    sigma7 = Root[p, x, 2];
    RealDigits[sigma7, 10, 102][[1]]
  • PARI
    polrootsreal(1 - x^3 - x^5 - x^7 + x^10)[2] \\ Charles R Greathouse IV, Feb 11 2025

Formula

p = 1 - x^3 - x^5 - x^7 + x^10.

A316608 Decimal expansion of the eighth smallest known Salem number.

Original entry on oeis.org

1, 2, 3, 2, 6, 1, 3, 5, 4, 8, 5, 9, 3, 1, 2, 1, 0, 0, 3, 9, 6, 2, 7, 3, 1, 6, 9, 4, 8, 0, 7, 9, 0, 9, 7, 9, 1, 4, 1, 1, 5, 7, 7, 3, 7, 1, 2, 0, 9, 8, 3, 1, 0, 4, 6, 7, 2, 9, 9, 1, 6, 5, 8, 2, 0, 5, 3, 8, 3, 9, 3, 5, 1, 3, 7, 3, 8, 9, 5, 7, 0, 3, 1, 3, 4, 9, 7, 8, 4, 8, 8, 5, 3, 0, 3, 2, 4, 9, 2, 2, 3, 3
Offset: 1

Views

Author

Jean-François Alcover, Jul 08 2018

Keywords

Examples

			1.2326135485931210039627316948079097914115773712098310467299165820538...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3 ), A306079 (sigma4), A316605 (sigma5), A316606 (sigma6), A316607 (sigma7), A316609 (sigma9), A316610 (sigma10).

Programs

  • Mathematica
    c1 = {1, -1, 0, 0, 0, -1, 1, 0, 0, -1, 1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2] - 1]).c2;
    sigma8 = Root[p, x, 2];
    RealDigits[sigma8, 10, 102][[1]]
  • PARI
    polrootsreal(1 - x - x^5 + x^6 - x^9 + x^10 - x^11 + x^14 - x^15 - x^19 + x^20)[2] \\ Charles R Greathouse IV, Feb 11 2025

Formula

p = 1 - x - x^5 + x^6 - x^9 + x^10 - x^11 + x^14 - x^15 - x^19 + x^20.

A316609 Decimal expansion of the ninth smallest known Salem number.

Original entry on oeis.org

1, 2, 3, 5, 6, 6, 4, 5, 8, 0, 3, 8, 9, 7, 4, 7, 3, 0, 8, 1, 0, 5, 1, 6, 9, 3, 5, 1, 5, 3, 1, 2, 6, 3, 4, 7, 9, 7, 2, 3, 5, 1, 0, 0, 4, 2, 7, 4, 6, 2, 3, 9, 0, 7, 7, 6, 5, 0, 4, 3, 8, 0, 7, 7, 2, 0, 6, 3, 1, 1, 9, 2, 4, 9, 4, 0, 2, 7, 8, 1, 4, 9, 8, 8, 9, 1, 6, 6, 0, 7, 4, 0, 4, 2, 6, 3, 8, 5, 9, 2, 5
Offset: 1

Views

Author

Jean-François Alcover, Jul 08 2018

Keywords

Examples

			1.2356645803897473081051693515312634797235100427462390776504380772063...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3 ), A306079 (sigma4), A316605 (sigma5), A316606 (sigma6), A316607 (sigma7), A316608 (sigma8), A316610 (sigma10).

Programs

  • Mathematica
    c1 = {1, 0, -1, -1, 0, 0, 0, 1, 1, 0, -1, -1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2] - 1]).c2;
    sigma9 = Root[p, x, 2];
    RealDigits[sigma9, 10, 101][[1]]
  • PARI
    polrootsreal(1 - x^2 - x^3 + x^7 + x^8 - x^10 - x^11 - x^12 + x^14 + x^15 - x^19 - x^20 + x^22)[2] \\ Charles R Greathouse IV, Feb 11 2025

Formula

p = 1 - x^2 - x^3 + x^7 + x^8 - x^10 - x^11 - x^12 + x^14 + x^15 - x^19 - x^20 + x^22.

A316610 Decimal expansion of the tenth smallest known Salem number.

Original entry on oeis.org

1, 2, 3, 6, 3, 1, 7, 9, 3, 1, 8, 0, 3, 2, 3, 0, 4, 8, 9, 8, 9, 9, 0, 9, 4, 8, 6, 9, 8, 0, 2, 0, 5, 4, 5, 5, 3, 9, 4, 4, 8, 1, 9, 2, 0, 8, 3, 6, 7, 8, 6, 9, 5, 6, 3, 7, 9, 4, 7, 5, 3, 7, 8, 4, 1, 1, 1, 8, 3, 6, 9, 9, 9, 5, 6, 7, 1, 4, 1, 5, 6, 3, 4, 2, 7, 2, 4, 3, 8, 5, 4, 3, 6, 5, 4, 0, 5, 5, 6, 1, 8, 8
Offset: 1

Views

Author

Jean-François Alcover, Jul 08 2018

Keywords

Examples

			1.2363179318032304898990948698020545539448192083678695637947537841118...
		

Crossrefs

Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3 ), A306079 (sigma4), A316605 (sigma5), A316606 (sigma6), A316607 (sigma7), A316608 (sigma8), A316609 (sigma9).

Programs

  • Mathematica
    c1 = {1, -1, 0, 0, 0, 0, 0, 0, -1};
    c2 = Join[c1, Reverse[Most[c1]]];
    p = (x^Range[0, Length[c2] - 1]).c2;
    sigma10 = Root[p, x, 2];
    RealDigits[sigma10, 10, 102][[1]]
  • PARI
    polrootsreal(1 - x - x^8 - x^15 + x^16)[2] \\ Charles R Greathouse IV, Feb 11 2025

Formula

p = 1 - x - x^8 - x^15 + x^16.
Showing 1-10 of 10 results.