A127864
Number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 5, 11, 33, 87, 241, 655, 1793, 4895, 13377, 36543, 99841, 272767, 745217, 2035967, 5562369, 15196671, 41518081, 113429503, 309895169, 846649343, 2313089025, 6319476735, 17265131521, 47169216511, 128868696065, 352075825151, 961889042433, 2627929735167
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 5 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (1,4,2).
-
I:=[1,1,5]; [n le 3 select I[n] else Self(n-1) + 4*Self(n-2) + 2*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2022
-
CoefficientList[Series[1/(1-x-4*x^2-2*x^3), {x,0,30}], x]
-
A028860 = BinaryRecurrenceSequence(2,2,-1,1)
def A127864(n): return A028860(n+2) + (-1)^n
[A127864(n) for n in range(51)] # G. C. Greubel, Dec 08 2022
A127867
Number of tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 11, 39, 195, 849, 3895, 17511, 79339, 358397, 1620843, 7326991, 33127155, 149766353, 677103839, 3061202815, 13839823275, 62570318397, 282882722979, 1278922980071, 5782057329219, 26140890761969, 118183916056327, 534313772133687, 2415651952691819
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 11 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (3, 7, -1, 2).
-
Table[Coefficient[Normal[Series[(1 - x)^2/(1 - 3x - 7x^2 + x^3 - 2x^4), {x, 0, 30}]], x, n], {n, 0, 30}]
A127870
Number of tilings of a 4 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 33, 195, 2023, 16839, 151817, 1328849, 11758369, 103628653, 914646205, 8068452381, 71189251649, 628067760289, 5541284098945, 48888866203241, 431331449340441, 3805499681885145, 33574725778806817, 296219181642118401, 2613448287490035073
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 33 because the 4x2 board can be tiled in one way with only square tiles, in 12 ways using one L-tile and 5 square tiles and in 20 ways with 2 L-tiles and 2 square tiles.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (5, 34, 6, -72, -28, 74, -10, -4, -4).
-
Table[Coefficient[Normal[Series[(1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5)/(1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9), {x, 0, 30}]], x, n], {n, 0, 30}]
A220061
Number of tilings of an n X n square using right trominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 1, 5, 39, 2023, 249651, 128938297, 207866584389, 1208344842789831, 23649239068131551559, 1609120545126107661426575, 375082120094104660413783094451, 301522432794951154854984388046484015, 833441700776362178606942848178200903068675, 7931715551857283775957120938092133944383839378911
Offset: 0
a(2) = 5, because there are 5 tilings of a 2 X 2 square using right trominoes and 1 X 1 tiles:
._._. ._._. .___. .___. ._._.
|_|_| | |_| | ._| |_. | |_| |
|_|_| |___| |_|_| |_|_| |___|
A220055
Number of tilings of a 5 X n rectangle using right trominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 1, 87, 849, 16839, 249651, 4134881, 65564239, 1057354073, 16939662301, 272086395449, 4365892578855, 70082433262847, 1124809701807527, 18054055051423891, 289774657566172859, 4651038841674376909, 74651407535212480809, 1198192596525147061411
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (7, 143, 144, -1701, -756, 5229, 308, -3069, -1738, 1180, -64, -212, -152, 76).
-
gf:= (20*x^12 +88*x^11 -162*x^10 +26*x^9 +506*x^8 +453*x^7 -605*x^6 -300*x^5 -12*x^4 +47*x^3 +63*x^2 +6*x -1) /
(76*x^14 -152*x^13 -212*x^12 -64*x^11 +1180*x^10 -1738*x^9 -3069*x^8 +308*x^7 +5229*x^6 -756*x^5 -1701*x^4 +144*x^3 +143*x^2 +7*x -1):
a:= n-> coeff (series (gf, x, n+1), x, n):
seq(a(n), n=0..30);
A220056
Number of tilings of a 6 X n rectangle using right trominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 1, 241, 3895, 151817, 4134881, 128938297, 3814023955, 115136505933, 3448441154503, 103598912114381, 3108676107844557, 93324146271938457, 2801146229279170843, 84082823432914559453, 2523871643346500063787, 75758559732310254661669, 2274020749613202850958405
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (13, 523, 607, -29450, -10786, 530937, 37118, -5299837, 4432537, 25090652, -45228345, -26901436, 118554222, -46195161, -104188994, 68370580, 80969102, -53775823, -89810738, 93989108, 11698064, -39110100, 3529824, 6795568, 641184, -988592, -441952, 102080, 49664, -3072).
-
gf:= -(128*x^27 -2784*x^26 +11984*x^25 -8672*x^24 -7128*x^23 -34144*x^22 -125640*x^21 +760596*x^20 -718466*x^19 -174758*x^18 +2760675*x^17 -10918043*x^16 +15110507*x^15 -1068879*x^14 -13774618*x^13 +9742272*x^12 +298116*x^11 -1535703*x^10 -168489*x^9 +78558*x^8 +130467*x^7 +2413*x^6 -18124*x^5 -3982*x^4 +368*x^3 +295*x^2 +12*x -1) /
(3072*x^30 -49664*x^29 -102080*x^28 +441952*x^27 +988592*x^26 -641184*x^25 -6795568*x^24 -3529824*x^23 +39110100*x^22 -11698064*x^21 -93989108*x^20 +89810738*x^19 +53775823*x^18 -80969102*x^17 -68370580*x^16 +104188994*x^15 +46195161*x^14 -118554222*x^13 +26901436*x^12 +45228345*x^11 -25090652*x^10 -4432537*x^9 +5299837*x^8 -37118*x^7 -530937*x^6 +10786*x^5 +29450*x^4 -607*x^3 -523*x^2 -13*x +1):
a:= n-> coeff (series (gf, x, n+1), x, n):
seq(a(n), n=0..30);
A220057
Number of tilings of a 7 X n rectangle using right trominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 1, 655, 17511, 1328849, 65564239, 3814023955, 207866584389, 11621270470141, 643234164533111, 35743258143250665, 1983110281248178907, 110094091718725808219, 6110504997318928433203, 339180718810796793005395, 18826477870730711026769043
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (31, 1688, -11130, -459918, 3166506, 40112677, -345723568, -1333668560, 18915874110, -20132638419, -340706701381, 1131454106758, 1800169591293, -14547686180172, 10887029502746, 77700424321275, -170596686592062, -132867339076434, 814120637502953, -408118945300204, -1874303491278113, 2371447568852003, 2065885358158550, -4510347925558337, -1768155209701568, 5626569971126797, 3093435933277591, -8190510139279992, -2502197734475072, 9273148424569143, -314261646620241, -5569775487698427, 516945589065495, 1847002437609681, 588598730671956, -502432621307848, -485326816160748, 41192473052820, 191502873476778, 53306213357242, -44398553938820, -28149773265720, 14071419586760, 5403011349240, -6450496694256, -6085229826624, -1539089548288, -55320676736, 84819354752, 9551531264, 6799316992, 3599682560, 134983680, -12386304, 1048576).
-
gf:= (196608*x^53 +15716352*x^52 +82890752*x^51 -81387520*x^50 +2420729856*x^49 -5502464896*x^48 +11135136384*x^47 -2587529280*x^46 -242120057280*x^45 -391566462048*x^44 -677756970360*x^43 -26891699024*x^42 +3419049690968*x^41 -898216784632*x^40 -8630220265938*x^39 +11892744055744*x^38 +12674156157904*x^37
-23326232274170*x^36 -8460520836030*x^35 -49526668612724*x^34 -52615082821909*x^33 +385796302646490*x^32 -89063359404187*x^31 -689833337938642*x^30 +276301559560831*x^29 +939553216589439*x^28 -751421966953043*x^27 -387235565854614*x^26 +367601964623911*x^25 +391200153596741*x^24 -321438046442330*x^23 -254149045627282*x^22
+327959797230961*x^21 -30793906263310*x^20 -105485377717340*x^19 +46988439121753*x^18 +10650397716161*x^17 -12878278811627*x^16 +1803973124746*x^15 +1212527797540*x^14 -447484692550*x^13 +13047687869*x^12 +14482637535*x^11 -3330884126*x^10 +1108885391*x^9 -182374621*x^8 -34669281*x^7 +8700029*x^6 +605086*x^5 -151416*x^4 -6648*x^3 +1064*x^2 +30*x -1) /
(1048576*x^55 -12386304*x^54 +134983680*x^53 +3599682560*x^52 +6799316992*x^51 +9551531264*x^50 +84819354752*x^49 -55320676736*x^48 -1539089548288*x^47 -6085229826624*x^46 -6450496694256*x^45 +5403011349240*x^44 +14071419586760*x^43 -28149773265720*x^42 -44398553938820*x^41 +53306213357242*x^40 +191502873476778*x^39
+41192473052820*x^38 -485326816160748*x^37 -502432621307848*x^36 +588598730671956*x^35 +1847002437609681*x^34 +516945589065495*x^33 -5569775487698427*x^32 -314261646620241*x^31 +9273148424569143*x^30 -2502197734475072*x^29 -8190510139279992*x^28 +3093435933277591*x^27 +5626569971126797*x^26 -1768155209701568*x^25 -4510347925558337*x^24 +2065885358158550*x^23 +2371447568852003*x^22 -1874303491278113*x^21
-408118945300204*x^20 +814120637502953*x^19 -132867339076434*x^18 -170596686592062*x^17 +77700424321275*x^16 +10887029502746*x^15 -14547686180172*x^14 +1800169591293*x^13 +1131454106758*x^12 -340706701381*x^11 -20132638419*x^10 +18915874110*x^9 -1333668560*x^8 -345723568*x^7 +40112677*x^6 +3166506*x^5 -459918*x^4 -11130*x^3 +1688*x^2 +31*x -1):
a:= n-> coeff (series (gf, x, n+1), x, n):
seq(a(n), n=0..30);
A220058
Number of tilings of an 8 X n rectangle using right trominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 1, 1793, 79339, 11758369, 1057354073, 115136505933, 11621270470141, 1208344842789831, 124179182077944123, 12820466607209726137, 1321211811196491541315, 136254474646105474794407, 14047759147701072483029529, 1448476467705491364792194617
Offset: 0
A220059
Number of tilings of a 9 X n rectangle using right trominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 1, 4895, 358397, 103628653, 16939662301, 3448441154503, 643234164533111, 124179182077944123, 23649239068131551559, 4528155459015015278497, 865169296748334990311763, 165442366105217743521821785, 31626233120646483498726015897, 6046521630766477909485058575551
Offset: 0
A220060
Number of tilings of a 10 X n rectangle using right trominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 1, 13377, 1620843, 914646205, 272086395449, 103598912114381, 35743258143250665, 12820466607209726137, 4528155459015015278497, 1609120545126107661426575, 570433530146121798730683231, 202412926394304755588236748481, 71796961505258542492662333092533
Offset: 0
Showing 1-10 of 10 results.
Comments