A127864
Number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 5, 11, 33, 87, 241, 655, 1793, 4895, 13377, 36543, 99841, 272767, 745217, 2035967, 5562369, 15196671, 41518081, 113429503, 309895169, 846649343, 2313089025, 6319476735, 17265131521, 47169216511, 128868696065, 352075825151, 961889042433, 2627929735167
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 5 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (1,4,2).
-
I:=[1,1,5]; [n le 3 select I[n] else Self(n-1) + 4*Self(n-2) + 2*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2022
-
CoefficientList[Series[1/(1-x-4*x^2-2*x^3), {x,0,30}], x]
-
A028860 = BinaryRecurrenceSequence(2,2,-1,1)
def A127864(n): return A028860(n+2) + (-1)^n
[A127864(n) for n in range(51)] # G. C. Greubel, Dec 08 2022
A220054
Number A(n,k) of tilings of a k X n rectangle using right trominoes and 1 X 1 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 33, 39, 33, 1, 1, 1, 1, 87, 195, 195, 87, 1, 1, 1, 1, 241, 849, 2023, 849, 241, 1, 1, 1, 1, 655, 3895, 16839, 16839, 3895, 655, 1, 1, 1, 1, 1793, 17511, 151817, 249651, 151817, 17511, 1793, 1, 1
Offset: 0
A(2,2) = 5, because there are 5 tilings of a 2 X 2 rectangle using right trominoes and 1 X 1 tiles:
._._. ._._. .___. .___. ._._.
|_|_| | |_| | ._| |_. | |_| |
|_|_| |___| |_|_| |_|_| |___|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 5, 11, 33, 87, 241, 655, ...
1, 1, 11, 39, 195, 849, 3895, 17511, ...
1, 1, 33, 195, 2023, 16839, 151817, 1328849, ...
1, 1, 87, 849, 16839, 249651, 4134881, 65564239, ...
1, 1, 241, 3895, 151817, 4134881, 128938297, 3814023955, ...
1, 1, 655, 17511, 1328849, 65564239, 3814023955, 207866584389, ...
Columns (or rows) k=0+1, 2-10 give:
A000012,
A127864,
A127867,
A127870,
A220055,
A220056,
A220057,
A220058,
A220059,
A220060.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; b(n, subsop(k=1, l))+
`if`(k>1 and l[k-1]=1, b(n, subsop(k=2, k-1=2, l)), 0)+
`if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{k, t}, Which[ Max[l] > n , 0, n == 0 || l == {} , 1 , Min[l] > 0 , t := Min[l]; b[n - t, l - t] , True, For[k = 1, True, k++, If[ l[[k]] == 0 , Break[] ] ]; b[n, ReplacePart[l, k -> 1]] + If[k > 1 && l[[k - 1]] == 1, b[n, ReplacePart[l, {k -> 2, k - 1 -> 2}]], 0] + If[k < Length[l] && l[[k + 1]] == 1, b[n, ReplacePart[l, {k -> 2, k + 1 -> 2}]], 0] + If[k < Length[l] && l[[k + 1]] == 0, b[n, ReplacePart[l, {k -> 1, k + 1 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k + 1 -> 1}]] + b[n, ReplacePart[l, {k -> 2, k + 1 -> 2}]], 0] + If[k + 1 < Length[l] && l[[k + 1]] == 0 && l[[k + 2]] == 0, b[n, ReplacePart[l, {k -> 2, k + 1 -> 2, k + 2 -> 2}]], 0] ] ]; a[n_, k_] := If[n >= k, b[n, Array[0 &, k]], b[k, Array[0 &, n]]]; Table [Table [a[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A127867
Number of tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 11, 39, 195, 849, 3895, 17511, 79339, 358397, 1620843, 7326991, 33127155, 149766353, 677103839, 3061202815, 13839823275, 62570318397, 282882722979, 1278922980071, 5782057329219, 26140890761969, 118183916056327, 534313772133687, 2415651952691819
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 11 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (3, 7, -1, 2).
-
Table[Coefficient[Normal[Series[(1 - x)^2/(1 - 3x - 7x^2 + x^3 - 2x^4), {x, 0, 30}]], x, n], {n, 0, 30}]
A127865
Number of square tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
2, 8, 30, 108, 354, 1152, 3614, 11204, 34170, 103176, 308598, 916236, 2702834, 7929872, 23155182, 67333140, 195082218, 563367960, 1622185958, 4658753564, 13347741666, 38160007200, 108881256414, 310108078116, 881761288154
Offset: 1
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 8 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 8 square tiles.
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (2, 7, -4, -20, -16, -4).
-
Table[(2n - 12)(-1)^n + (2/3)((9 - 5Sqrt[3])(1 + Sqrt[3])^n + (9 + 5Sqrt[3])(1 - Sqrt[3])^n) + (n/Sqrt[3])((Sqrt[3] - 1)( 1 + Sqrt[3])^n + (Sqrt[3] + 1)(1 - Sqrt[3])^n), {n, 1, 30}]
A165791
Number of tilings of a 4 X n rectangle using dominoes and right trominoes.
Original entry on oeis.org
1, 1, 11, 55, 380, 2319, 15171, 96139, 619773, 3962734, 25445515, 163048957, 1045897075, 6705473761, 43001795070, 275730928993, 1768128097215, 11337760387473, 72702310606249, 466192677008538, 2989403530821497, 19169143325987983, 122919655766448729
Offset: 0
a(2) = 11, because there are 11 tilings of a 4 X 2 rectangle using dominoes and right trominoes:
.___. .___. .___. ._._. ._._. .___. .___. .___. .___. .___. .___.
|___| |___| |_._| | | | | | | |___| |___| | ._| |_. | | ._| |_. |
|___| |_._| | | | |_|_| |_|_| | ._| |_. | |_| | | |_| |_| | | |_|
|___| | | | |_|_| |___| | | | |_| | | |_| |___| |___| | |_| |_| |
|___| |_|_| |___| |___| |_|_| |___| |___| |___| |___| |___| |___| .
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (4, 21, -25, -65, -17, 24, -11, -15, 9).
-
a:= n-> (Matrix([[619773, 96139, 15171, 2319, 380, 55, 11, 1, 1]]). Matrix(9, (i,j)-> if i=j-1 then 1 elif j=1 then [4, 21, -25, -65, -17, 24, -11, -15, 9][i] else 0 fi)^n)[1,9]: seq(a(n), n=0..25);
-
a[n_] := {619773, 96139, 15171, 2319, 380, 55, 11, 1, 1} . MatrixPower[ Table[ Which[i == j-1, 1, j == 1, {4, 21, -25, -65, -17, 24, -11, -15, 9}[[i]], True, 0], {i, 1, 9}, {j, 1, 9}], n] // Last; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 04 2013, translated and adapted from Alois P. Heinz's Maple program *)
A127866
Number of L-shaped tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
4, 12, 52, 172, 580, 1852, 5828, 17980, 54788, 165116, 493316, 1463036, 4312068, 12641276, 36887556, 107201532, 310427652, 896045052, 2579017732, 7403843580, 21205303300, 60604891132, 172872744964, 492233179132, 1399272374276
Offset: 2
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 4 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 4 L-shaped tiles.
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (3, 4, -8, -12, -4).
-
Table[Coefficient[Normal[Series[4x^2/((1 + x)(1 - 2x - 2x^2)^2), {x, 0, 20}]], x, n], {n, 0, 20}]
G.f. proposed by Maksym Voznyy checked and corrected by
R. J. Mathar, Sep 16 2009.
A127868
Number of square tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
3, 30, 171, 1044, 5691, 30678, 159891, 821100, 4151511, 20764590, 102880755, 505866804, 2471159019, 12004723878, 58037429739, 279405305676, 1340130574407, 6406579480446, 30536794325547, 145166910196116, 688444702671291, 3257788855054518, 15385512460164963
Offset: 1
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 30 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 6 + 8*3 = 30 square tiles in all of the 3x2 tilings.
- Robert Israel, Table of n, a(n) for n = 1..1510
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (6,5,-44,-39,2,-29,4,-4).
-
I:=[3,30,171,1044,5691,30678,159891,821100]; [n le 8 select I[n] else 6*Self(n-1)+5*Self(n-2)-44*Self(n-3)-39*Self(n-4)+2*Self(n-5)-29*Self(n-6)+4*Self(n-7)-4*Self(n-8): n in [1..30]]; // Vincenzo Librandi, Dec 23 2015
-
f:= gfun:-rectoproc({a(n) - 6*a(n-1)-5*a(n-2)+44*a(n-3)+39*a(n-4)-2*a(n-5)+29*a(n-6)-4*a(n-7)+4*a(n-8), a(0) = 0, a(1) = 3, a(2) = 30, a(3) = 171, a(4) = 1044, a(5) = 5691, a(6) = 30678, a(7) = 159891},a(n), remember):
seq(f(n), n=1..40); # Robert Israel, Dec 22 2015
-
Table[Coefficient[Normal[Series[3x(1-x)^2(1+6x+3x^2)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]
LinearRecurrence[{6, 5, -44, -39, 2, -29, 4, -4}, {3, 30, 171, 1044, 5691, 30678, 159891, 821100}, 25] (* Vincenzo Librandi, Dec 23 2015 *)
-
my(x='x+O('x^100)); Vec(3*x*(1-x)^2*(1+6*x+3*x^2)/(1-3*x-7*x^2+x^3-2*x^4)^2) \\ Altug Alkan, Dec 22 2015
A127869
Number of L-shaped tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
12, 60, 432, 2348, 13144, 69280, 361012, 1841736, 9286900, 46303316, 228903592, 1123242916, 5477879120, 26572232312, 128302070508, 616985221280, 2956362520140, 14120605179500, 67252176519008, 319477138444252, 1514116534887688, 7160712605686480, 33799490762646948
Offset: 2
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 12 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 8 + 2*2 = 12 L-tiles in all of the 3 X 2 tilings.
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (6,5,-44,-39,2,-29,4,-4).
-
Table[Coefficient[Normal[Series[4x^2(3-3x+3x^2-4x^3+x^4)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]
A353879
Number of tilings of a 4 X n rectangle using right trominoes, dominoes and 1 X 1 tiles.
Original entry on oeis.org
1, 5, 189, 3633, 83374, 1817897, 40220893, 886130549, 19546906987, 431024540644, 9505433227293, 209617856008535, 4622624792880217, 101940750143038657, 2248057208102711472, 49575464007447758483, 1093267021618939507743, 24109360928450426884813, 531673668551361276666101
Offset: 0
a(2)=189.
The number of tilings (mirroring included) using r trominoes
___ ___ ___ ___
r=1: | _| | _| | |_| |_2_| r=0: 71 = A030186(4)
|_|_| |_| | |___| |_ |
| 7 | |3|_| | 7 | |3|_|
|___| |___| |___| |___|
4*7 + 4*3 + 4*7 + 4*6 = 92
___ ___ ___ ___ ___ ___ ___
r=2: | _| | _| | _| | _| | _| | |_| | |_|
|_| | |_|2| |_|_| |_|_| |_|_| |___| |___|
|___| | |_| | _|_|_| | |_ | |_ | | _|
|_2_| |___| |_|_| |___| |_|_| |_|_| |_|_|
4*2 + 2*2 + 4*1 + 2*1 + 4*1 + 2*1 + 2*1 = 26
Result: a(2) = 71+92+26 = 189.
Legend:
___ ___ ___
|_2_| stands for |___| or |_|_|
_ _ _ _
_|3| _| | _|_| _|_|
|___| stands for |_|_| or |___| or |_|_|
___ ___ ___ ___ ___ ___ ___ ___
| 7 | |___| |_|_| |___| | | | |_| | | |_| |_|_|
|___| stands for |___|,|___|,|_|_|,|_|_|,|_|_|,|_|_| or |_|_|
Showing 1-9 of 9 results.
Comments