A002605
a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 6, 16, 44, 120, 328, 896, 2448, 6688, 18272, 49920, 136384, 372608, 1017984, 2781184, 7598336, 20759040, 56714752, 154947584, 423324672, 1156544512, 3159738368, 8632565760, 23584608256, 64434348032, 176037912576, 480944521216, 1313964867584
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 8, 29.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
- M. Diepenbroek, M. Maus, and A. Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Dale Gerdemann Bird Flock, Youtube video, 2011.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=2.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 476
- D. Jhala, G. P. S. Rathore, and K. Sisodiya, Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes, Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 4, 119-124.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eqs. (39), (41) and (45), lhs, m=2.
- D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, Journal of the London Mathematical Society 1.3 (1935): 162-165. See U_n.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in flattened derangements, Disc. Math. Lett. (2025) Vol. 15, 67-74. See p. 74.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12.
- Alan Prince, Counting parses, Rutgers Optimality Archive, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,2).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for Lucas sequences.
First differences are given by
A026150.
a(n) =
A073387(n, 0), n>=0 (first column of triangle).
a(n) =
A028860(n)/2 apart from the initial terms.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
Cf.
A080953,
A052948,
A080040,
A028859,
A030195,
A106435,
A108898,
A125145,
A265106,
A265107,
A265278,
A270810,
A293005,
A293006,
A293007.
-
a002605 n = a002605_list !! n
a002605_list =
0 : 1 : map (* 2) (zipWith (+) a002605_list (tail a002605_list))
-- Reinhard Zumkeller, Oct 15 2011
-
[Floor(((1 + Sqrt(3))^n - (1 - Sqrt(3))^n)/(2*Sqrt(3))): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
-
[n le 2 select n-1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+2*a[n-2]od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 15 2008
a := n -> `if`(n<3, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -2));
seq(simplify(a(n)), n=0..29); # Peter Luschny, Dec 16 2015
-
Expand[Table[((1 + Sqrt[3])^n - (1 - Sqrt[3])^n)/(2Sqrt[3]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
a[n_]:=(MatrixPower[{{1,3},{1,1}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{2, 2}, {0, 1}, 30] (* Robert G. Wilson v, Apr 13 2013 *)
Round@Table[Fibonacci[n, Sqrt[2]] 2^((n - 1)/2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
nxt[{a_,b_}]:={b,2(a+b)}; NestList[nxt,{0,1},30][[All,1]] (* Harvey P. Dale, Sep 17 2022 *)
-
Vec(x/(1-2*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 10 2011
-
A002605(n)=([2,2;1,0]^n)[2,1] \\ M. F. Hasler, Aug 06 2018
-
[lucas_number1(n,2,-2) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
-
a = BinaryRecurrenceSequence(2,2)
print([a(n) for n in (0..29)]) # Peter Luschny, Aug 29 2016
A167762
a(n) = 2*a(n-1)+3*a(n-2)-6*a(n-3) starting a(0)=a(1)=0, a(2)=1.
Original entry on oeis.org
0, 0, 1, 2, 7, 14, 37, 74, 175, 350, 781, 1562, 3367, 6734, 14197, 28394, 58975, 117950, 242461, 484922, 989527, 1979054, 4017157, 8034314, 16245775, 32491550, 65514541, 131029082, 263652487, 527304974, 1059392917, 2118785834, 4251920575, 8503841150
Offset: 0
Cf.
A004526,
A004737,
A008967,
A038754,
A046663,
A068911,
A088809,
A093971,
A365376,
A365544,
A366130.
-
LinearRecurrence[{2,3,-6},{0,0,1},40] (* Harvey P. Dale, Sep 17 2013 *)
CoefficientList[Series[x^2/((2 x - 1) (3 x^2 - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 17 2013 *)
Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],n+1]&]],{n,0,10}] (* Gus Wiseman, Oct 06 2023 *)
A220054
Number A(n,k) of tilings of a k X n rectangle using right trominoes and 1 X 1 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 33, 39, 33, 1, 1, 1, 1, 87, 195, 195, 87, 1, 1, 1, 1, 241, 849, 2023, 849, 241, 1, 1, 1, 1, 655, 3895, 16839, 16839, 3895, 655, 1, 1, 1, 1, 1793, 17511, 151817, 249651, 151817, 17511, 1793, 1, 1
Offset: 0
A(2,2) = 5, because there are 5 tilings of a 2 X 2 rectangle using right trominoes and 1 X 1 tiles:
._._. ._._. .___. .___. ._._.
|_|_| | |_| | ._| |_. | |_| |
|_|_| |___| |_|_| |_|_| |___|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 5, 11, 33, 87, 241, 655, ...
1, 1, 11, 39, 195, 849, 3895, 17511, ...
1, 1, 33, 195, 2023, 16839, 151817, 1328849, ...
1, 1, 87, 849, 16839, 249651, 4134881, 65564239, ...
1, 1, 241, 3895, 151817, 4134881, 128938297, 3814023955, ...
1, 1, 655, 17511, 1328849, 65564239, 3814023955, 207866584389, ...
Columns (or rows) k=0+1, 2-10 give:
A000012,
A127864,
A127867,
A127870,
A220055,
A220056,
A220057,
A220058,
A220059,
A220060.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; b(n, subsop(k=1, l))+
`if`(k>1 and l[k-1]=1, b(n, subsop(k=2, k-1=2, l)), 0)+
`if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{k, t}, Which[ Max[l] > n , 0, n == 0 || l == {} , 1 , Min[l] > 0 , t := Min[l]; b[n - t, l - t] , True, For[k = 1, True, k++, If[ l[[k]] == 0 , Break[] ] ]; b[n, ReplacePart[l, k -> 1]] + If[k > 1 && l[[k - 1]] == 1, b[n, ReplacePart[l, {k -> 2, k - 1 -> 2}]], 0] + If[k < Length[l] && l[[k + 1]] == 1, b[n, ReplacePart[l, {k -> 2, k + 1 -> 2}]], 0] + If[k < Length[l] && l[[k + 1]] == 0, b[n, ReplacePart[l, {k -> 1, k + 1 -> 2}]] + b[n, ReplacePart[l, {k -> 2, k + 1 -> 1}]] + b[n, ReplacePart[l, {k -> 2, k + 1 -> 2}]], 0] + If[k + 1 < Length[l] && l[[k + 1]] == 0 && l[[k + 2]] == 0, b[n, ReplacePart[l, {k -> 2, k + 1 -> 2, k + 2 -> 2}]], 0] ] ]; a[n_, k_] := If[n >= k, b[n, Array[0 &, k]], b[k, Array[0 &, n]]]; Table [Table [a[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A127867
Number of tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 11, 39, 195, 849, 3895, 17511, 79339, 358397, 1620843, 7326991, 33127155, 149766353, 677103839, 3061202815, 13839823275, 62570318397, 282882722979, 1278922980071, 5782057329219, 26140890761969, 118183916056327, 534313772133687, 2415651952691819
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 11 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (3, 7, -1, 2).
-
Table[Coefficient[Normal[Series[(1 - x)^2/(1 - 3x - 7x^2 + x^3 - 2x^4), {x, 0, 30}]], x, n], {n, 0, 30}]
A127870
Number of tilings of a 4 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 33, 195, 2023, 16839, 151817, 1328849, 11758369, 103628653, 914646205, 8068452381, 71189251649, 628067760289, 5541284098945, 48888866203241, 431331449340441, 3805499681885145, 33574725778806817, 296219181642118401, 2613448287490035073
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 33 because the 4x2 board can be tiled in one way with only square tiles, in 12 ways using one L-tile and 5 square tiles and in 20 ways with 2 L-tiles and 2 square tiles.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (5, 34, 6, -72, -28, 74, -10, -4, -4).
-
Table[Coefficient[Normal[Series[(1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5)/(1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9), {x, 0, 30}]], x, n], {n, 0, 30}]
A127865
Number of square tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
2, 8, 30, 108, 354, 1152, 3614, 11204, 34170, 103176, 308598, 916236, 2702834, 7929872, 23155182, 67333140, 195082218, 563367960, 1622185958, 4658753564, 13347741666, 38160007200, 108881256414, 310108078116, 881761288154
Offset: 1
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 8 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 8 square tiles.
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (2, 7, -4, -20, -16, -4).
-
Table[(2n - 12)(-1)^n + (2/3)((9 - 5Sqrt[3])(1 + Sqrt[3])^n + (9 + 5Sqrt[3])(1 - Sqrt[3])^n) + (n/Sqrt[3])((Sqrt[3] - 1)( 1 + Sqrt[3])^n + (Sqrt[3] + 1)(1 - Sqrt[3])^n), {n, 1, 30}]
A127866
Number of L-shaped tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
4, 12, 52, 172, 580, 1852, 5828, 17980, 54788, 165116, 493316, 1463036, 4312068, 12641276, 36887556, 107201532, 310427652, 896045052, 2579017732, 7403843580, 21205303300, 60604891132, 172872744964, 492233179132, 1399272374276
Offset: 2
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 4 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 4 L-shaped tiles.
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (3, 4, -8, -12, -4).
-
Table[Coefficient[Normal[Series[4x^2/((1 + x)(1 - 2x - 2x^2)^2), {x, 0, 20}]], x, n], {n, 0, 20}]
G.f. proposed by Maksym Voznyy checked and corrected by
R. J. Mathar, Sep 16 2009.
A127868
Number of square tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
3, 30, 171, 1044, 5691, 30678, 159891, 821100, 4151511, 20764590, 102880755, 505866804, 2471159019, 12004723878, 58037429739, 279405305676, 1340130574407, 6406579480446, 30536794325547, 145166910196116, 688444702671291, 3257788855054518, 15385512460164963
Offset: 1
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 30 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 6 + 8*3 = 30 square tiles in all of the 3x2 tilings.
- Robert Israel, Table of n, a(n) for n = 1..1510
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (6,5,-44,-39,2,-29,4,-4).
-
I:=[3,30,171,1044,5691,30678,159891,821100]; [n le 8 select I[n] else 6*Self(n-1)+5*Self(n-2)-44*Self(n-3)-39*Self(n-4)+2*Self(n-5)-29*Self(n-6)+4*Self(n-7)-4*Self(n-8): n in [1..30]]; // Vincenzo Librandi, Dec 23 2015
-
f:= gfun:-rectoproc({a(n) - 6*a(n-1)-5*a(n-2)+44*a(n-3)+39*a(n-4)-2*a(n-5)+29*a(n-6)-4*a(n-7)+4*a(n-8), a(0) = 0, a(1) = 3, a(2) = 30, a(3) = 171, a(4) = 1044, a(5) = 5691, a(6) = 30678, a(7) = 159891},a(n), remember):
seq(f(n), n=1..40); # Robert Israel, Dec 22 2015
-
Table[Coefficient[Normal[Series[3x(1-x)^2(1+6x+3x^2)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]
LinearRecurrence[{6, 5, -44, -39, 2, -29, 4, -4}, {3, 30, 171, 1044, 5691, 30678, 159891, 821100}, 25] (* Vincenzo Librandi, Dec 23 2015 *)
-
my(x='x+O('x^100)); Vec(3*x*(1-x)^2*(1+6*x+3*x^2)/(1-3*x-7*x^2+x^3-2*x^4)^2) \\ Altug Alkan, Dec 22 2015
A127869
Number of L-shaped tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
12, 60, 432, 2348, 13144, 69280, 361012, 1841736, 9286900, 46303316, 228903592, 1123242916, 5477879120, 26572232312, 128302070508, 616985221280, 2956362520140, 14120605179500, 67252176519008, 319477138444252, 1514116534887688, 7160712605686480, 33799490762646948
Offset: 2
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 12 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 8 + 2*2 = 12 L-tiles in all of the 3 X 2 tilings.
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (6,5,-44,-39,2,-29,4,-4).
-
Table[Coefficient[Normal[Series[4x^2(3-3x+3x^2-4x^3+x^4)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]
A167784
a(n) = 2^n - (1 - (-1)^n)*3^((n-1)/2).
Original entry on oeis.org
1, 0, 4, 2, 16, 14, 64, 74, 256, 350, 1024, 1562, 4096, 6734, 16384, 28394, 65536, 117950, 262144, 484922, 1048576, 1979054, 4194304, 8034314, 16777216, 32491550, 67108864, 131029082, 268435456, 527304974, 1073741824, 2118785834, 4294967296, 8503841150
Offset: 0
-
seq(2^n - (1 - (-1)^n)*3^((n-1)/2), n=0..100); # Robert Israel, Apr 11 2019
-
LinearRecurrence[{2, 3, -6}, {1, 0, 4}, 40] (* Harvey P. Dale, Nov 29 2011 *)
Showing 1-10 of 15 results.
Comments