cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A127864 Number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

1, 1, 5, 11, 33, 87, 241, 655, 1793, 4895, 13377, 36543, 99841, 272767, 745217, 2035967, 5562369, 15196671, 41518081, 113429503, 309895169, 846649343, 2313089025, 6319476735, 17265131521, 47169216511, 128868696065, 352075825151, 961889042433, 2627929735167
Offset: 0

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Comments

The signed version of this sequence appears as A077917.

Examples

			a(2) = 5 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile.
		

Crossrefs

Programs

  • Magma
    I:=[1,1,5]; [n le 3 select I[n] else Self(n-1) + 4*Self(n-2) + 2*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-x-4*x^2-2*x^3), {x,0,30}], x]
  • SageMath
    A028860 = BinaryRecurrenceSequence(2,2,-1,1)
    def A127864(n): return A028860(n+2) + (-1)^n
    [A127864(n) for n in range(51)] # G. C. Greubel, Dec 08 2022

Formula

a(n) = a(n-1) + 4*a(n-2) + 2*a(n-3).
a(n) = (-1)^n + (1/sqrt(3)) * ((1+sqrt(3))^n - (1-sqrt(3))^n).
G.f.: 1/(1 - x - 4*x^2 - 2*x^3).
a(n) = A028860(n+2) + (-1)^n. - R. J. Mathar, Oct 29 2010
E.g.f.: exp(-x) + (2/sqrt(3))*exp(x)*sinh(sqrt(3)*x). - G. C. Greubel, Dec 08 2022
From Greg Dresden, Nov 10 2024: (Start)
a(n) = 1 + 4*a(n-2) + 6*Sum_{i=0..n-3} a(i) for n>1.
a(2*n) = a(n)^2 + 4*a(n-1)^2 + 4*a(n-1)*a(n-2) for n>1. (End)

A127867 Number of tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

1, 1, 11, 39, 195, 849, 3895, 17511, 79339, 358397, 1620843, 7326991, 33127155, 149766353, 677103839, 3061202815, 13839823275, 62570318397, 282882722979, 1278922980071, 5782057329219, 26140890761969, 118183916056327, 534313772133687, 2415651952691819
Offset: 0

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 11 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles.
		

Crossrefs

Column k=3 of A220054. - Alois P. Heinz, Dec 03 2012

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[(1 - x)^2/(1 - 3x - 7x^2 + x^3 - 2x^4), {x, 0, 30}]], x, n], {n, 0, 30}]

Formula

G.f.: (1-x)^2/(1-3x-7x^2+x^3-2x^4).

A127870 Number of tilings of a 4 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

1, 1, 33, 195, 2023, 16839, 151817, 1328849, 11758369, 103628653, 914646205, 8068452381, 71189251649, 628067760289, 5541284098945, 48888866203241, 431331449340441, 3805499681885145, 33574725778806817, 296219181642118401, 2613448287490035073
Offset: 0

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 33 because the 4x2 board can be tiled in one way with only square tiles, in 12 ways using one L-tile and 5 square tiles and in 20 ways with 2 L-tiles and 2 square tiles.
		

Crossrefs

Column k=4 of A220054. - Alois P. Heinz, Dec 03 2012

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[(1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5)/(1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9), {x, 0, 30}]], x, n], {n, 0, 30}]

Formula

G.f.: (1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5) / (1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9).

A127866 Number of L-shaped tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

4, 12, 52, 172, 580, 1852, 5828, 17980, 54788, 165116, 493316, 1463036, 4312068, 12641276, 36887556, 107201532, 310427652, 896045052, 2579017732, 7403843580, 21205303300, 60604891132, 172872744964, 492233179132, 1399272374276
Offset: 2

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 4 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 4 L-shaped tiles.
		

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[4x^2/((1 + x)(1 - 2x - 2x^2)^2), {x, 0, 20}]], x, n], {n, 0, 20}]

Formula

a(n) = 4 (-1)^n - (2/9)[(9-5*Sqrt(3))(1+Sqrt(3))^n + (9+5*Sqrt(3))(1-Sqrt(3))^n] - (n/3)[(1-Sqrt(3))(1+Sqrt(3))^n+ (1+Sqrt(3))(1-Sqrt(3))^n].
G.f.: 4x^2/((1+x)(1-2x-2x^2)^2).

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.

A127868 Number of square tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

3, 30, 171, 1044, 5691, 30678, 159891, 821100, 4151511, 20764590, 102880755, 505866804, 2471159019, 12004723878, 58037429739, 279405305676, 1340130574407, 6406579480446, 30536794325547, 145166910196116, 688444702671291, 3257788855054518, 15385512460164963
Offset: 1

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 30 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 6 + 8*3 = 30 square tiles in all of the 3x2 tilings.
		

Crossrefs

Programs

  • Magma
    I:=[3,30,171,1044,5691,30678,159891,821100]; [n le 8 select I[n] else 6*Self(n-1)+5*Self(n-2)-44*Self(n-3)-39*Self(n-4)+2*Self(n-5)-29*Self(n-6)+4*Self(n-7)-4*Self(n-8): n in [1..30]]; // Vincenzo Librandi, Dec 23 2015
  • Maple
    f:= gfun:-rectoproc({a(n) - 6*a(n-1)-5*a(n-2)+44*a(n-3)+39*a(n-4)-2*a(n-5)+29*a(n-6)-4*a(n-7)+4*a(n-8), a(0) = 0, a(1) = 3, a(2) = 30, a(3) = 171, a(4) = 1044, a(5) = 5691, a(6) = 30678, a(7) = 159891},a(n), remember):
    seq(f(n), n=1..40); # Robert Israel, Dec 22 2015
  • Mathematica
    Table[Coefficient[Normal[Series[3x(1-x)^2(1+6x+3x^2)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]
    LinearRecurrence[{6, 5, -44, -39, 2, -29, 4, -4}, {3, 30, 171, 1044, 5691, 30678, 159891, 821100}, 25] (* Vincenzo Librandi, Dec 23 2015 *)
  • PARI
    my(x='x+O('x^100)); Vec(3*x*(1-x)^2*(1+6*x+3*x^2)/(1-3*x-7*x^2+x^3-2*x^4)^2) \\ Altug Alkan, Dec 22 2015
    

Formula

G.f.: 3x(1-x)^2(1+6x+3x^2)/(1-3x-7x^2+x^3-2x^4)^2.

A127869 Number of L-shaped tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

12, 60, 432, 2348, 13144, 69280, 361012, 1841736, 9286900, 46303316, 228903592, 1123242916, 5477879120, 26572232312, 128302070508, 616985221280, 2956362520140, 14120605179500, 67252176519008, 319477138444252, 1514116534887688, 7160712605686480, 33799490762646948
Offset: 2

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 12 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 8 + 2*2 = 12 L-tiles in all of the 3 X 2 tilings.
		

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[4x^2(3-3x+3x^2-4x^3+x^4)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]

Formula

G.f.: 4*x^2*(x-1)*(x^3-3*x^2-3)/(1-3*x-7*x^2+x^3-2*x^4)^2.

A245965 Triangle read by rows: T(n,k) is the number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares) that have k 1 X 1 tiles.

Original entry on oeis.org

1, 0, 0, 1, 0, 4, 0, 0, 1, 2, 0, 0, 8, 0, 0, 1, 0, 0, 20, 0, 0, 12, 0, 0, 1, 0, 16, 0, 0, 54, 0, 0, 16, 0, 0, 1, 4, 0, 0, 112, 0, 0, 104, 0, 0, 20, 0, 0, 1, 0, 0, 108, 0, 0, 352, 0, 0, 170, 0, 0, 24, 0, 0, 1, 0, 48, 0, 0, 664, 0, 0, 800, 0, 0, 252, 0, 0, 28, 0, 0, 1, 8, 0, 0, 704, 0, 0, 2280, 0, 0, 1520, 0, 0, 350, 0, 0, 32, 0, 0, 1, 0, 0, 416, 0, 0, 4064, 0, 0, 5820, 0, 0, 2576, 0, 0, 464, 0, 0, 36, 0, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 15 2014

Keywords

Comments

Row n has 2n+1 entries.
Sum of entries in row n = A127864(n).
Sum_{k>=0} k*T(n,k) = A127865(n).

Examples

			T(2,1)=4 because we can place the 1 X 1 tile in any corner of the 2 X 2 board.
Triangle starts:
  1;
  0,  0,  1;
  0,  4,  0,  0,  1;
  2,  0,  0,  8,  0,  0,  1;
  0,  0, 20,  0,  0, 12,  0,  0,  1;
		

Crossrefs

Programs

  • Maple
    G := 1/(1-t^2*z-4*t*z^2-2*z^3): Gser := simplify(series(G, z = 0, 15)): for j from 0 to 13 do P[j] := sort(coeff(Gser, z, j)) end do: for j from 0 to 13 do seq(coeff(P[j], t, i), i = 0 .. 2*j) end do; # yields sequence in triangular form

Formula

G.f.: 1/(1-t^2*z - 4*t*z^2 - 2*z^3).
The trivariate g.f. with z marking length, t marking 1 X 1 tiles, and s marking L-shaped tiles is 1/(1-t^2*z-4*t*s*z^2-2*s^2*z^3).
From Robert Israel, Aug 15 2014: (Start)
T(n+3,k+2) = T(n+2,k) + 4*T(n+1,k+1) + 2*T(n,k+2).
T(n,0) = 2^(n/3) if n == 0 (mod 3), T(n,0) = 0 otherwise.
T(n,1) = (n+1)*2^((n+4)/3)/3 if n == 2 (mod 3), T(n,1) = 0 otherwise.
(End)

A245966 Triangle read by rows: T(n,k) is the number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares) that have k L-shaped tiles.

Original entry on oeis.org

1, 1, 1, 4, 1, 8, 2, 1, 12, 20, 1, 16, 54, 16, 1, 20, 104, 112, 4, 1, 24, 170, 352, 108, 1, 28, 252, 800, 664, 48, 1, 32, 350, 1520, 2280, 704, 8, 1, 36, 464, 2576, 5820, 4064, 416, 1, 40, 594, 4032, 12404, 14784, 4560, 128, 1, 44, 740, 5952, 23408, 41104, 25376, 3200, 16
Offset: 0

Views

Author

Emeric Deutsch, Aug 15 2014

Keywords

Comments

Row n contains 1+floor(2n/3) entries.
Sum of entries in row n = A127864(n).
Sum_{k>=0} k*T(n,k) = A127866(n).

Examples

			T(2,1) = 4 because we can place the L-shaped tile in the 2*2 board in 4 positions.
Triangle starts:
  1;
  1;
  1,  4;
  1,  8,  2;
  1, 12, 20;
  1, 16, 54, 16;
		

Crossrefs

Programs

  • Maple
    G := 1/(1-z-4*t*z^2-2*t^2*z^3): Gser := simplify(series(G, z = 0, 15)): for j from 0 to 13 do P[j] := sort(coeff(Gser, z, j)) end do: for j from 0 to 13 do seq(coeff(P[j], t, i), i = 0 .. floor(2*j*(1/3))) end do; # yields sequence in triangular form

Formula

G.f.: 1/(1 - z - 4*t*z^2 - 2*t^2*z^3).
The trivariate g.f. with z marking length, t marking 1 X 1 tiles, and s marking L-shaped tiles is 1/(1 - t^2*z - 4*t*s*z^2 - 2*s^2*z^3).
Showing 1-8 of 8 results.