A127864
Number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 5, 11, 33, 87, 241, 655, 1793, 4895, 13377, 36543, 99841, 272767, 745217, 2035967, 5562369, 15196671, 41518081, 113429503, 309895169, 846649343, 2313089025, 6319476735, 17265131521, 47169216511, 128868696065, 352075825151, 961889042433, 2627929735167
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 5 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (1,4,2).
-
I:=[1,1,5]; [n le 3 select I[n] else Self(n-1) + 4*Self(n-2) + 2*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2022
-
CoefficientList[Series[1/(1-x-4*x^2-2*x^3), {x,0,30}], x]
-
A028860 = BinaryRecurrenceSequence(2,2,-1,1)
def A127864(n): return A028860(n+2) + (-1)^n
[A127864(n) for n in range(51)] # G. C. Greubel, Dec 08 2022
A127867
Number of tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 11, 39, 195, 849, 3895, 17511, 79339, 358397, 1620843, 7326991, 33127155, 149766353, 677103839, 3061202815, 13839823275, 62570318397, 282882722979, 1278922980071, 5782057329219, 26140890761969, 118183916056327, 534313772133687, 2415651952691819
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 11 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (3, 7, -1, 2).
-
Table[Coefficient[Normal[Series[(1 - x)^2/(1 - 3x - 7x^2 + x^3 - 2x^4), {x, 0, 30}]], x, n], {n, 0, 30}]
A127870
Number of tilings of a 4 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
1, 1, 33, 195, 2023, 16839, 151817, 1328849, 11758369, 103628653, 914646205, 8068452381, 71189251649, 628067760289, 5541284098945, 48888866203241, 431331449340441, 3805499681885145, 33574725778806817, 296219181642118401, 2613448287490035073
Offset: 0
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 33 because the 4x2 board can be tiled in one way with only square tiles, in 12 ways using one L-tile and 5 square tiles and in 20 ways with 2 L-tiles and 2 square tiles.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (5, 34, 6, -72, -28, 74, -10, -4, -4).
-
Table[Coefficient[Normal[Series[(1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5)/(1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9), {x, 0, 30}]], x, n], {n, 0, 30}]
A127865
Number of square tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
2, 8, 30, 108, 354, 1152, 3614, 11204, 34170, 103176, 308598, 916236, 2702834, 7929872, 23155182, 67333140, 195082218, 563367960, 1622185958, 4658753564, 13347741666, 38160007200, 108881256414, 310108078116, 881761288154
Offset: 1
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 8 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 8 square tiles.
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (2, 7, -4, -20, -16, -4).
-
Table[(2n - 12)(-1)^n + (2/3)((9 - 5Sqrt[3])(1 + Sqrt[3])^n + (9 + 5Sqrt[3])(1 - Sqrt[3])^n) + (n/Sqrt[3])((Sqrt[3] - 1)( 1 + Sqrt[3])^n + (Sqrt[3] + 1)(1 - Sqrt[3])^n), {n, 1, 30}]
A127866
Number of L-shaped tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
4, 12, 52, 172, 580, 1852, 5828, 17980, 54788, 165116, 493316, 1463036, 4312068, 12641276, 36887556, 107201532, 310427652, 896045052, 2579017732, 7403843580, 21205303300, 60604891132, 172872744964, 492233179132, 1399272374276
Offset: 2
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 4 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 4 L-shaped tiles.
- P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
- Index entries for linear recurrences with constant coefficients, signature (3, 4, -8, -12, -4).
-
Table[Coefficient[Normal[Series[4x^2/((1 + x)(1 - 2x - 2x^2)^2), {x, 0, 20}]], x, n], {n, 0, 20}]
G.f. proposed by Maksym Voznyy checked and corrected by
R. J. Mathar, Sep 16 2009.
A127869
Number of L-shaped tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
Original entry on oeis.org
12, 60, 432, 2348, 13144, 69280, 361012, 1841736, 9286900, 46303316, 228903592, 1123242916, 5477879120, 26572232312, 128302070508, 616985221280, 2956362520140, 14120605179500, 67252176519008, 319477138444252, 1514116534887688, 7160712605686480, 33799490762646948
Offset: 2
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
a(2) = 12 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 8 + 2*2 = 12 L-tiles in all of the 3 X 2 tilings.
- P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
- S. Heubach, Tiling with Ls and Squares, 2005.
- Index entries for linear recurrences with constant coefficients, signature (6,5,-44,-39,2,-29,4,-4).
-
Table[Coefficient[Normal[Series[4x^2(3-3x+3x^2-4x^3+x^4)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]
Showing 1-6 of 6 results.
Comments