cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A127864 Number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

1, 1, 5, 11, 33, 87, 241, 655, 1793, 4895, 13377, 36543, 99841, 272767, 745217, 2035967, 5562369, 15196671, 41518081, 113429503, 309895169, 846649343, 2313089025, 6319476735, 17265131521, 47169216511, 128868696065, 352075825151, 961889042433, 2627929735167
Offset: 0

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Comments

The signed version of this sequence appears as A077917.

Examples

			a(2) = 5 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile.
		

Crossrefs

Programs

  • Magma
    I:=[1,1,5]; [n le 3 select I[n] else Self(n-1) + 4*Self(n-2) + 2*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-x-4*x^2-2*x^3), {x,0,30}], x]
  • SageMath
    A028860 = BinaryRecurrenceSequence(2,2,-1,1)
    def A127864(n): return A028860(n+2) + (-1)^n
    [A127864(n) for n in range(51)] # G. C. Greubel, Dec 08 2022

Formula

a(n) = a(n-1) + 4*a(n-2) + 2*a(n-3).
a(n) = (-1)^n + (1/sqrt(3)) * ((1+sqrt(3))^n - (1-sqrt(3))^n).
G.f.: 1/(1 - x - 4*x^2 - 2*x^3).
a(n) = A028860(n+2) + (-1)^n. - R. J. Mathar, Oct 29 2010
E.g.f.: exp(-x) + (2/sqrt(3))*exp(x)*sinh(sqrt(3)*x). - G. C. Greubel, Dec 08 2022
From Greg Dresden, Nov 10 2024: (Start)
a(n) = 1 + 4*a(n-2) + 6*Sum_{i=0..n-3} a(i) for n>1.
a(2*n) = a(n)^2 + 4*a(n-1)^2 + 4*a(n-1)*a(n-2) for n>1. (End)

A127867 Number of tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

1, 1, 11, 39, 195, 849, 3895, 17511, 79339, 358397, 1620843, 7326991, 33127155, 149766353, 677103839, 3061202815, 13839823275, 62570318397, 282882722979, 1278922980071, 5782057329219, 26140890761969, 118183916056327, 534313772133687, 2415651952691819
Offset: 0

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 11 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles.
		

Crossrefs

Column k=3 of A220054. - Alois P. Heinz, Dec 03 2012

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[(1 - x)^2/(1 - 3x - 7x^2 + x^3 - 2x^4), {x, 0, 30}]], x, n], {n, 0, 30}]

Formula

G.f.: (1-x)^2/(1-3x-7x^2+x^3-2x^4).

A127870 Number of tilings of a 4 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

1, 1, 33, 195, 2023, 16839, 151817, 1328849, 11758369, 103628653, 914646205, 8068452381, 71189251649, 628067760289, 5541284098945, 48888866203241, 431331449340441, 3805499681885145, 33574725778806817, 296219181642118401, 2613448287490035073
Offset: 0

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 33 because the 4x2 board can be tiled in one way with only square tiles, in 12 ways using one L-tile and 5 square tiles and in 20 ways with 2 L-tiles and 2 square tiles.
		

Crossrefs

Column k=4 of A220054. - Alois P. Heinz, Dec 03 2012

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[(1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5)/(1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9), {x, 0, 30}]], x, n], {n, 0, 30}]

Formula

G.f.: (1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5) / (1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9).

A127865 Number of square tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

2, 8, 30, 108, 354, 1152, 3614, 11204, 34170, 103176, 308598, 916236, 2702834, 7929872, 23155182, 67333140, 195082218, 563367960, 1622185958, 4658753564, 13347741666, 38160007200, 108881256414, 310108078116, 881761288154
Offset: 1

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 8 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 8 square tiles.
		

Crossrefs

Programs

  • Mathematica
    Table[(2n - 12)(-1)^n + (2/3)((9 - 5Sqrt[3])(1 + Sqrt[3])^n + (9 + 5Sqrt[3])(1 - Sqrt[3])^n) + (n/Sqrt[3])((Sqrt[3] - 1)( 1 + Sqrt[3])^n + (Sqrt[3] + 1)(1 - Sqrt[3])^n), {n, 1, 30}]

Formula

a(n) = (2*n - 12)*(-1)^n + (2/3)*((9-5*sqrt(3))*(1+sqrt(3))^n + (9+5*sqrt(3))*(1-sqrt(3))^n) + (n/sqrt(3))*((sqrt(3)-1)*(1+sqrt(3))^n+ (sqrt(3)+1)*(1-sqrt(3))^n).
G.f.: 2*x*(1+2*x)/((1+x)^2*(1-2*x-2*x^2)^2). - Colin Barker, Apr 30 2012

A127866 Number of L-shaped tiles in all tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

4, 12, 52, 172, 580, 1852, 5828, 17980, 54788, 165116, 493316, 1463036, 4312068, 12641276, 36887556, 107201532, 310427652, 896045052, 2579017732, 7403843580, 21205303300, 60604891132, 172872744964, 492233179132, 1399272374276
Offset: 2

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 4 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile and thus all the tilings of the 2 X 2 board contain 4 L-shaped tiles.
		

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[4x^2/((1 + x)(1 - 2x - 2x^2)^2), {x, 0, 20}]], x, n], {n, 0, 20}]

Formula

a(n) = 4 (-1)^n - (2/9)[(9-5*Sqrt(3))(1+Sqrt(3))^n + (9+5*Sqrt(3))(1-Sqrt(3))^n] - (n/3)[(1-Sqrt(3))(1+Sqrt(3))^n+ (1+Sqrt(3))(1-Sqrt(3))^n].
G.f.: 4x^2/((1+x)(1-2x-2x^2)^2).

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.

A127869 Number of L-shaped tiles in all tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

Original entry on oeis.org

12, 60, 432, 2348, 13144, 69280, 361012, 1841736, 9286900, 46303316, 228903592, 1123242916, 5477879120, 26572232312, 128302070508, 616985221280, 2956362520140, 14120605179500, 67252176519008, 319477138444252, 1514116534887688, 7160712605686480, 33799490762646948
Offset: 2

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007

Keywords

Examples

			a(2) = 12 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles, so there are altogether 8 + 2*2 = 12 L-tiles in all of the 3 X 2 tilings.
		

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Normal[Series[4x^2(3-3x+3x^2-4x^3+x^4)/(1-3x-7x^2+x^3-2x^4)^2, {x, 0, 30}]], x, n], {n, 0, 30}]

Formula

G.f.: 4*x^2*(x-1)*(x^3-3*x^2-3)/(1-3*x-7*x^2+x^3-2*x^4)^2.
Showing 1-6 of 6 results.