cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220101 Number of ordered set partitions of {1,...,n} into n-1 blocks avoiding the pattern 123.

Original entry on oeis.org

0, 1, 6, 27, 112, 450, 1782, 7007, 27456, 107406, 419900, 1641486, 6418656, 25110020, 98285670, 384942375, 1508593920, 5915896470, 23213240820, 91140287370, 358042932000, 1407342229020, 5534695100220, 21777424274502, 85729014099072, 337635166767500
Offset: 1

Views

Author

Lara Pudwell, Dec 04 2012

Keywords

Comments

Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function n^2 for n > 0. Then A(n, n) equals a(n+1) for all n > 0. - John M. Campbell, Jan 20 2019

Examples

			An ordered set partition is a set partition where the order of the blocks is important.  A 123 pattern within such a set partition is a list of 3 elements a from block i, b from block j, and c from block k such that i < j < k and a < b < c.
For n=3, the a(3)=6 ordered partitions are 12/3, 13/2, 23/1, 3/12, 2/13, 23/1.
For n=4, the a(4)=27 ordered partitions are 12/4/3, 3/12/4, 3/4/12, 4/12/3, 4/3/12, 13/4/2, 2/4/13, 4/13/2, 4/2/13, 14/3/2, 2/14/3, 3/2/14, 2/3/14, 23/1/4, 23/4/1, 1/4/23, 4/1/23, 4/23/1, 24/1/3, 24/3/1, 3/1/24, 3/24/1, 34/1/2, 34/2/1, 2/34/1, 2/1/34, 1/34/2.
		

Crossrefs

Cf. A220097 (counts 123-avoiding ordered set partitions where all blocks have size 2), A051666, A001622.

Programs

  • GAP
    List([1..30], n -> 3*(n-1)/(2*n-1)*Binomial(2*n-1,n-2)); # G. C. Greubel, Feb 12 2019
  • Haskell
    a220101 n = (a051666 (2 * (n - 1)) (n - 1)) `div` 2
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    [3*(n-1)/(2*n-1)*Binomial(2*n-1,n-2): n in [1..30]]; // G. C. Greubel, Feb 12 2019
    
  • Maple
    g:=(2*x^2-7*x+2+3*x*sqrt(1-4*x)-2*sqrt(1-4*x))/(2*x*sqrt(1-4*x));
    series(g,x,50);
    seriestolist(%); # N. J. A. Sloane, Apr 13 2014
    a := n -> 3*2^(-2+2*n)*GAMMA(n-1/2)*(n-1)^2/(sqrt(Pi)*GAMMA(2+n)):
    seq(simplify(a(n)), n=1..26); # Peter Luschny, Dec 14 2015
  • Mathematica
    T[n_, 0] := n^2; T[n_, n_] := n^2;
    T[n_, k_] := T[n, k] = T[n-1, k-1] + T[n-1, k];
    a[n_] := T[2(n-1), n-1]/2;
    Array[a, 26] (* Jean-François Alcover, Jul 13 2018, after Reinhard Zumkeller *)
    Table[3*(n-1)/(2*n-1)*Binomial[2*n-1,n-2], {n,1,30}] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    vector(30, n, 3*(n-1)/(2*n-1)*binomial(2*n-1,n-2)) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    [3*(n-1)/(2*n-1)*binomial(2*n-1,n-2) for n in (1..30)] # G. C. Greubel, Feb 12 2019
    

Formula

G.f.: (2*x^2-7*x+2+3*x*sqrt(1-4*x)-2*sqrt(1-4*x))/(2*x*sqrt(1-4*x)) [see Chen et al., 2013 - Bruno Berselli, Dec 05 2012]
a(n)/a(n-1) = 2*(2*n-3)*(n-1)^2/((n+1)*(n-2)^2) for n> 2 . - Bruno Berselli, Dec 05 2012
a(n) = A051666(2*(n-1),n-1) / 2. - Reinhard Zumkeller, Aug 05 2013
a(n) = 3*(n-1)/(2*n-1)*binomial(2*n-1,n-2). [See Godbole et al., Theorem 4.] - Peter Bala, Dec 18 2013
a(n) = 3*2^(-2+2*n)*Gamma(-1/2+n)*(-1+n)^2/(sqrt(Pi)*Gamma(2+n)). - Peter Luschny, Dec 14 2015
a(n) ~ (3/4)*4^n*(1 - (21/8)/n + (393/128)/n^2 - (3055/1024)/n^3 + (99099/32768)/n^4) /sqrt(n*Pi). - Peter Luschny, Dec 16 2015
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=2} 1/a(n) = Pi^2/27 + 11*Pi/(27*sqrt(3)) + 1/9.
Sum_{n>=2} (-1)^n/a(n) = 4*log(phi)^2/3 + 34*log(phi)/(15*sqrt(5)) + 1/15, where phi is the golden ratio (A001622). (End)