0, 2, 0, 5, 2, 0, 9, 7, 2, 0, 14, 16, 9, 2, 0, 20, 30, 25, 11, 2, 0, 27, 50, 55, 36, 13, 2, 0, 35, 77, 105, 91, 49, 15, 2, 0, 44, 112, 182, 196, 140, 64, 17, 2, 0, 54, 156, 294, 378, 336, 204, 81, 19, 2, 0
Offset: 1
The array A(r, n) starts:
r\n 1 2 3 4 5 6 7 8 9 10 ...
2: 0 2 5 9 14 20 27 35 44 54
3: 0 2 7 16 30 50 77 112 156 210
4: 0 2 9 25 55 105 182 294 450 660
5: 0 2 11 36 91 196 378 672 1122 1782
6: 0 2 13 49 140 336 714 1386 2508 4290
7: 0 2 15 64 204 540 1254 2640 5148 9438
8: 0 2 17 81 285 825 2079 4719 9867 19305
9: 0 2 19 100 385 1210 3289 8008 17875 37180
10: 0 2 21 121 506 1716 5005 13013 30888 68068
...
The triangle T(n, r) starts:
n\r 2 3 4 5 6 7 8 9 10 11 ...
1: 0
2: 2 0
3: 5 2 0
4: 9 7 2 0
5: 14 16 9 2 0
6: 20 30 25 11 2 0
7: 27 50 55 36 13 2 0
8: 35 77 105 91 49 15 2 0
9: 44 112 182 196 140 64 17 2 0
10: 54 156 294 378 336 204 81 19 2 0
...
A(r, 1) = 0 , r >= 2, because a symmetric rank r tensor t of dimension one has one component t(1,1,...,1) (r 1's) and if the traces vanish then t vanishes.
A(3, 2) = 2 because a symmetric rank 3 tensor t with three indices taking values from 1 or 2 (n=2) has the four independent components t(1,1,1), t(1,1,2), t(1,2,2), t(2,2,2), and (invoking symmetry) the vanishing traces are Sum_{j=1..2} t(j,j,1) = 0 and Sum_{j=1..2} t(j,j,2) = 0. These are two constraints, which can be used to eliminate, say, t(1,1,1) and t(2,2,2), leaving 2 = A(3, 2) independent components, say, t(1,1,2) and t(1,2,2).
From _Peter Luschny_, Dec 14 2015: (Start)
The diagonals diag(n, k) start:
k\n 0 1 2 3 4 5 6
0: 0, 2, 9, 36, 140, 540, 2079, ... A007946
1: 2, 7, 25, 91, 336, 1254, 4719, ... A097613
2: 5, 16, 55, 196, 714, 2640, 9867, ... A051960
3: 9, 30, 105, 378, 1386, 5148, 19305, ... A029651
4: 14, 50, 182, 672, 2508, 9438, 35750, ... A051924
5: 20, 77, 294, 1122, 4290, 16445, 63206, ... A129869
6: 27, 112, 450, 1782, 7007, 27456, 107406, ... A220101
7: 35, 156, 660, 2717, 11011, 44200, 176358, ... A265612
8: 44, 210, 935, 4004, 16744, 68952, 281010, ... A265613
A000096,A005581,A005582,A005583,A005584.
(End)
Comments