cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A367454 Decimal expansion of (-1 + sqrt(29))/14 = 1/A223140.

Original entry on oeis.org

3, 1, 3, 2, 2, 6, 0, 5, 7, 6, 5, 2, 4, 6, 4, 5, 7, 3, 6, 6, 0, 7, 6, 5, 0, 3, 5, 1, 1, 0, 0, 2, 3, 5, 3, 9, 7, 3, 5, 3, 6, 5, 7, 2, 5, 8, 3, 1, 7, 7, 0, 6, 3, 1, 2, 6, 2, 8, 8, 4, 9, 0, 5, 0, 0, 1, 1, 8, 8, 9, 9, 7, 3, 4, 4, 8, 3, 2, 7, 6, 3, 7, 7, 6, 9, 0, 2, 4, 1, 2, 9, 7, 7, 1, 3, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 05 2024

Keywords

Comments

c^n = 7*A(-(n+1)) + A(-n)*phi29, for n >= 0, where phi29 = A223140, and A(-n) = A015442(-n) = sqrt(-7)^(-(n+1))*S(-(n+1), 1/sqrt(-7)) = -(i/sqrt(7))^(n+1)*S(n-1, i/sqrt(7)), with i = sqrt(-1) and the S-Chebyshev polynomials (see A049310), where S(-n, x) = -S(n-2, x), for n >= 1, and S(n, -x) = (-1)^n*S(n, x).

Examples

			c = 0.3132260576524645736607650351100235397353657258317706312628...
		

Crossrefs

Programs

  • Mathematica
    Flatten[First[RealDigits[(-1 + Sqrt[29])/14,10,96]]] (* Stefano Spezia, Jan 05 2024 *)

Formula

c = 1/phi29 = (-1 + phi(29))/7, with phi29 = A223140.

A010484 Decimal expansion of square root of 29.

Original entry on oeis.org

5, 3, 8, 5, 1, 6, 4, 8, 0, 7, 1, 3, 4, 5, 0, 4, 0, 3, 1, 2, 5, 0, 7, 1, 0, 4, 9, 1, 5, 4, 0, 3, 2, 9, 5, 5, 6, 2, 9, 5, 1, 2, 0, 1, 6, 1, 6, 4, 4, 7, 8, 8, 8, 3, 7, 6, 8, 0, 3, 8, 8, 6, 7, 0, 0, 1, 6, 6, 4, 5, 9, 6, 2, 8, 2, 7, 6, 5, 8, 6, 9, 2, 8, 7, 6, 6, 3, 3, 7, 8, 1, 6, 7, 9, 8, 3, 5, 4, 8
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 5 followed by {2, 1, 1, 2, 10} repeated. - Harry J. Smith, Jun 04 2009
The fundamental algebraic (integer) number in the field Q(sqrt(29)) is (1 + sqrt(29))/2 = A223140. - Wolfdieter Lang, Nov 21 2023

Examples

			5.385164807134504031250710491540329556295120161644788837680388670016645....
		

Crossrefs

Cf. A010128 (continued fraction). - Harry J. Smith, Jun 04 2009
Cf. A010128.

Programs

  • Mathematica
    RealDigits[N[Sqrt[29], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 22 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(29); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010484.txt", n, " ", d));  \\ Harry J. Smith, Jun 04 2009

A235162 Decimal expansion of (sqrt(33) + 1) / 2.

Original entry on oeis.org

3, 3, 7, 2, 2, 8, 1, 3, 2, 3, 2, 6, 9, 0, 1, 4, 3, 2, 9, 9, 2, 5, 3, 0, 5, 7, 3, 4, 1, 0, 9, 4, 6, 4, 6, 5, 9, 1, 1, 0, 1, 3, 2, 2, 2, 8, 9, 9, 1, 3, 9, 6, 1, 8, 3, 8, 4, 9, 9, 3, 8, 7, 3, 5, 2, 8, 2, 9, 5, 0, 3, 6, 0, 7, 2, 8, 7, 0, 2, 3, 1, 3, 5, 1, 3, 5, 6, 2, 6, 8, 2, 7, 9, 8, 3, 9, 4
Offset: 1

Views

Author

Jaroslav Krizek, Feb 06 2014

Keywords

Comments

Solution of y^2 - y - 8 = 0.
Decimal expansion of sqrt(8 + sqrt(8 + sqrt(8 + sqrt(8 + ... )))).
The sequence with a(1) = 2 is decimal expansion of sqrt(8 - sqrt(8 - sqrt(8 - sqrt(8 - ... )))).
A basis for the integers of the real quadratic number field K(sqrt(33)) is
<1, omega(33)>, where omega(33) = (1 + sqrt(33))/2. - Wolfdieter Lang, Feb 11 2020

Examples

			3.37228132326901432992530573410946465911013222899139618384993873528...
		

Crossrefs

Programs

  • MATLAB
    val = vpa((sqrt(sym(33))+1)/2,10001); list = char(val)-'0'; list = list([1,3:end-1]); % Christopher M. Conrey, Jan 26 2022
  • Mathematica
    RealDigits[(1 + Sqrt[33])/2, 10, 130]

A223141 Decimal expansion of (sqrt(29) - 1)/2.

Original entry on oeis.org

2, 1, 9, 2, 5, 8, 2, 4, 0, 3, 5, 6, 7, 2, 5, 2, 0, 1, 5, 6, 2, 5, 3, 5, 5, 2, 4, 5, 7, 7, 0, 1, 6, 4, 7, 7, 8, 1, 4, 7, 5, 6, 0, 0, 8, 0, 8, 2, 2, 3, 9, 4, 4, 1, 8, 8, 4, 0, 1, 9, 4, 3, 3, 5, 0, 0, 8, 3, 2, 2, 9, 8, 1, 4, 1, 3, 8, 2, 9, 3, 4, 6, 4, 3, 8, 3, 1, 6, 8, 9, 0, 8, 3, 9, 9, 1, 7, 7, 4, 2, 2, 0
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2013

Keywords

Comments

Decimal expansion of sqrt(7 - sqrt(7 - sqrt(7 - sqrt(7 - ... )))).
Sequence with a(1) = 3 is decimal expansion of sqrt(7 + sqrt(7 + sqrt(7 + sqrt(7 + ... )))) - A223140.

Examples

			2.1925824035672520156253552457701...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[29] - 1)/2, 10, 130][[1]]

Formula

Closed form: (sqrt(29) - 1)/2 = A098318-3 = 10*A085551+2 = A223140-1.
sqrt(7 - sqrt(7 - sqrt(7 - sqrt(7 - ... )))) + 1 = sqrt(7 + sqrt(7 + sqrt(7 + sqrt(7 + ... )))). See A223140.

A317016 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 7 * T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 7, 1, 14, 1, 21, 49, 1, 28, 147, 1, 35, 294, 343, 1, 42, 490, 1372, 1, 49, 735, 3430, 2401, 1, 56, 1029, 6860, 12005, 1, 63, 1372, 12005, 36015, 16807, 1, 70, 1764, 19208, 84035, 100842, 1, 77, 2205, 28812, 168070, 352947, 117649, 1, 84, 2695, 41160, 302526, 941192, 823543
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013614 ((1+7*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A027466 ((7+x)^n).
The coefficients in the expansion of 1/(1-x-7*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015442).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.192582403567252..., when n approaches infinity (see A223140).

Examples

			Triangle begins:
  1;
  1;
  1,  7;
  1, 14;
  1, 21,   49;
  1, 28,  147;
  1, 35,  294,   343;
  1, 42,  490,  1372;
  1, 49,  735,  3430,   2401;
  1, 56, 1029,  6860,  12005;
  1, 63, 1372, 12005,  36015,  16807;
  1, 70, 1764, 19208,  84035, 100842;
  1, 77, 2205, 28812, 168070, 352947, 117649;
  1, 84, 2695, 41160, 302526, 941192, 823543;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pages 70, 96.

Crossrefs

Row sums give A015442.

Programs

  • GAP
    Flat(List([0..13],n->List([0..Int(n/2)],k->7^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 7 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[7^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten

Formula

T(n,k) = 7^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).

A320029 Decimal expansion of sqrt(9 + sqrt(9 + sqrt(9 + sqrt(9 + ...)))) = (sqrt(37) + 1)/2.

Original entry on oeis.org

3, 5, 4, 1, 3, 8, 1, 2, 6, 5, 1, 4, 9, 1, 0, 9, 8, 4, 4, 4, 9, 9, 8, 4, 2, 1, 2, 2, 6, 0, 1, 0, 3, 3, 5, 3, 1, 0, 4, 2, 4, 8, 5, 0, 4, 7, 3, 9, 3, 2, 0, 5, 5, 9, 3, 2, 0, 9, 5, 7, 6, 5, 2, 3, 2, 4, 3, 1, 6, 6, 3, 6, 2, 6, 5, 9, 4, 5, 5, 1, 1, 9, 9, 0, 1, 5, 3, 3, 2, 1, 3, 9, 7, 8, 9, 2, 4, 3, 3, 1, 7, 1, 5, 4, 6
Offset: 1

Views

Author

Robert G. Wilson v, Oct 03 2018

Keywords

Comments

For x >= 0, sqrt(x + sqrt(x + sqrt(x + sqrt(x + ...)))) = (sqrt(4*x+1) + 1)/2. This is an integer for each x such that 2*x is a term in A000217.

Examples

			3.541381265149109844499842122601033531042485047393205593209576523243166362659...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(37)+1)/2,120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[9, {135}]], 10, 111][[1]] (* or *)
    RealDigits[(Sqrt[37] + 1)/2, 10, 111][[1]]
  • PARI
    (sqrt(37)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Minimal polynomial: x^2 - x - 9. - Stefano Spezia, Jul 02 2025

A367456 Expansion of (1 - x)/(1 - x - 7*x^2).

Original entry on oeis.org

1, 0, 7, 7, 56, 105, 497, 1232, 4711, 13335, 46312, 139657, 463841, 1441440, 4688327, 14778407, 47596696, 151045545, 484222417, 1541541232, 4931098151, 15721886775, 50239573832, 160292781257, 511969798081, 1634019266880, 5217807853447, 16655942721607, 53180597695736, 169772196746985
Offset: 0

Views

Author

Wolfdieter Lang, Jan 16 2024

Keywords

Comments

a(n) appears in the formula for powers of the fundamental algebraic number c = (1 + sqrt(29))/2 = A223140 of the quadratic number field Q(sqrt(29)): c^n = a(n) + A015442(n), for n >= 0. The formulas given below and in A015442 in terms of S-Chebyshev polynomials are valid also for c^(-n), for n >= 0, with 1/c = (-1 + sqrt(29))/14 = A367454.
a(n) is the number of compositions (ordered partitions) of n into parts >= 2 and there are 7 sorts of each part. - Joerg Arndt, Jan 16 2024

Crossrefs

Cf.: A010484, A015442 (partial sums), A049310, A223140, A367454.

Programs

  • Mathematica
    LinearRecurrence[{1,7},{1,0},30] (* James C. McMahon, Jan 16 2024 *)

Formula

a(n) = a(n-1) + 7*a(n-2), with a(0) = 1, a(1) = 0.
G.f.: (1 - x)/(1 - x - 7*x^2).
a(n) = 7*A015442(n-1), with A015442(-1) = 1/7.
a(n) = 7*(-i*sqrt(7))^(n-2)*S(n-2, i/sqrt(7)), with i = sqrt(-1) and the S-Chebyshev polynomial (see A049310). S(-2, x) = -1 and S(-1, x) = 0. The Fibonacci polynomials are F(n, x) = (-i)^(n-1)*S(n-1, i*x).
Showing 1-7 of 7 results.