cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A223607 Numbers n whose deficiency is 20: sigma(n) - 2*n = -20.

Original entry on oeis.org

46, 154, 190, 2656, 6490, 44650, 318250, 1360810, 1503370, 1788490, 3214090, 103712410, 3915380170, 6077111050, 9796360330, 10828121356, 33086522327050, 35966517350410, 11577093570201610, 16726040141635450, 576460762503970816
Offset: 1

Views

Author

Donovan Johnson, Mar 23 2013

Keywords

Comments

a(17) > 10^12.
a(17) > 10^13. - Giovanni Resta, Mar 29 2013
a(22) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
Any term x of this sequence can be combined with any term y of A223611 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			n = 1360810. sigma(n)-2*n = -20.
		

Crossrefs

Cf. A000203, A033879, A223611 (abundance 20).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -20]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 20 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    for(n=1, 10^8, if(sigma(n)-2*n==-20, print1(n ", ")))
    

Extensions

a(17)-a(21) from Hiroaki Yamanouchi, Aug 21 2018

A274565 Numbers k such that sigma(k) == 0 (mod k+10).

Original entry on oeis.org

14, 176, 1376, 3230, 3770, 6848, 114256, 125696, 544310, 561824, 740870, 2075648, 4199030, 4607296, 8436950, 33468416, 134045696, 199272950, 624032630, 1113445430, 1550860550, 85905593344, 2199001235456, 35184284008448
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(14) mod (14 + 10) = 24 mod 24 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | SumOfDivisors(n) mod (n+10) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
  • Mathematica
    k = 10; Select[Range[Abs@k+1, 10^6], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)

Extensions

a(13)-a(23) from Giovanni Resta, Jul 06 2016
a(24) from Max Alekseyev, May 29 2025

A275997 Numbers k whose deficiency is 64: 2k - sigma(k) = 64.

Original entry on oeis.org

134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) in this sequence can be used with any term y in A275996 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (A275996(2), a(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (A275996(7), a(11)) = (A063990(18), A063990(19)), where 66992 - 66928 = 64 is the deficiency of 66992 and the abundance of 66928.
Contains numbers 2^(k-1)*(2^k + 63) whenever 2^k + 63 is prime. - Max Alekseyev, Aug 27 2025

Examples

			a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
		

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).

Programs

  • Mathematica
    Select[Range[10^7], 2 # - DivisorSigma[1, #] == 64 &] (* Michael De Vlieger, Jan 10 2017 *)
  • PARI
    isok(n) = 2*n - sigma(n) == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(23)-a(31) from Jinyuan Wang, Mar 02 2020

A292626 Numbers k whose abundance is 128: sigma(k) - 2*k = 128.

Original entry on oeis.org

860, 5336, 6536, 9656, 16256, 55796, 70864, 98048, 361556, 776096, 2227616, 4145216, 4498136, 4632896, 8124416, 13086016, 34869056, 38546576, 150094976, 172960856, 196066256, 962085536, 1080008576, 1733780336, 1844788112, 2143256576, 2531343872, 2986104064, 9677743616, 11276687456, 17104503968, 20680182272, 21568135616
Offset: 1

Views

Author

Fabian Schneider, Sep 20 2017

Keywords

Crossrefs

Subsequence of A259174.
Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64).

Programs

  • Mathematica
    fQ[n_] := DivisorSigma[1, n] == 2 n + 128; Select[ Range@ 10^8, fQ] (* Robert G. Wilson v, Nov 19 2017 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 128; \\ Michel Marcus, Sep 20 2017

Extensions

a(9)-a(18) from Michel Marcus, Sep 20 2017
a(19)-a(24), a(26), a(29)-a(30), a(33) from Robert G. Wilson v, Nov 20 2017
Missing terms a(25), a(27)-a(28), a(31)-a(32) inserted and terms a(34) onward added by Max Alekseyev, Aug 30 2025

A371920 Abundant numbers whose abundance is also an abundant number.

Original entry on oeis.org

24, 30, 42, 54, 60, 66, 78, 84, 90, 96, 102, 112, 114, 120, 126, 132, 138, 140, 150, 156, 168, 174, 176, 180, 186, 198, 204, 208, 210, 216, 222, 224, 228, 234, 240, 246, 252, 258, 264, 270, 276, 280, 282, 294, 304, 306, 308, 312, 318, 330, 336, 342, 348, 354, 360
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2024

Keywords

Comments

First differs from A125639 at n = 12.
Numbers k such that A033880(k) > 0 and A033880(A033880(k)) > 0.
This sequence is infinite: if m is divisible by 6 and coprime to 5, then 5*m is a term.
All the multiply-perfect numbers (A007691) that are not 1 or perfect (A000396), i.e., the terms of A166069, are terms of this sequence.

Examples

			24 is a term since A033880(24) = 12 > 0 and A033880(12) = 4 > 0.
		

Crossrefs

Cf. A033880 (abundance), A000396, A007691, A125639.
Subsequence of A005101.

Programs

  • Mathematica
    ab[n_] := DivisorSigma[1, n] - 2*n; q[n_] := Module[{k = ab[n]}, k > 0 && ab[k] > 0]; Select[Range[360], q]
  • PARI
    ab(n) = sigma(n) - 2*n;
    is(n) = {my(k = ab(n)); k > 0 && ab(k) > 0;}

A385255 Numbers m whose deficiency is 24: sigma(m) - 2*m = -24.

Original entry on oeis.org

124, 9664, 151115727458150838697984
Offset: 1

Views

Author

Max Alekseyev, Jul 29 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 23) for k in A057203. First three terms have this form.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A275702 (k=26).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26).
Cf. A057203.

A387352 Numbers m with deficiency 32: sigma(m) - 2*m = -32.

Original entry on oeis.org

250, 376, 1276, 12616, 20536, 396916, 801376, 1297312, 8452096, 33721216, 40575616, 59376256, 89397016, 99523456, 101556016, 150441856, 173706136, 269096704, 283417216, 500101936, 1082640256, 1846506832, 15531546112, 34675557856, 136310177392, 136783784608
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 31) for k in A247952.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).
Cf. A247952.

A063788 Numbers k such that sigma(k) = 2k + Omega(k), where Omega(n) is the number of prime divisors of n (with repetition).

Original entry on oeis.org

18, 88, 4030, 5830, 518656, 13174976, 134094848, 2146926592, 2251798907715584, 12504224434300196, 324257317741920256
Offset: 1

Views

Author

Jason Earls, Aug 16 2001

Keywords

Comments

Includes terms 633825300114085990300727115776 and 2596148429267411760623818083663872. - Donovan Johnson, Dec 19 2008; edited by Max Alekseyev, May 27 2025
Terms a(2)-a(4) come from A088832, a(5) from A223609, a(6) and a(10) from A088833, a(7) from A141546, a(8) from A141547, a(9) from A275701, a(11) from A223611. Also includes the following terms k with Omega(k) = 56: 246434407522188377975875310632234056969345758857269346304, 15937923506379504700185810932457673797717574263217988829184, 264936582814027097239593278653623212574863771975442952634761216, 7948097484419456643668355219907727481405487440330234556835692544. - Max Alekseyev, May 27 2025

Crossrefs

Programs

  • PARI
    for(n=1,10^8, if(sigma(n)==2*n+bigomega(n),print(n)))

Formula

Numbers k such that A000203(k) = 2k + A001222(k). - Wesley Ivan Hurt, Oct 30 2022

Extensions

a(7)-a(8) from Donovan Johnson, Dec 19 2008
a(9) from Donovan Johnson confirmed and a(10)-a(11) added by Max Alekseyev, May 27 2025
Showing 1-8 of 8 results.