A224213 Number of nonnegative solutions to x^2 + y^2 + z^2 + u^2 <= n.
1, 5, 11, 15, 20, 32, 44, 48, 54, 70, 88, 100, 108, 124, 148, 160, 165, 189, 219, 235, 253, 281, 305, 317, 329, 357, 399, 427, 439, 475, 523, 539, 545, 581, 623, 659, 688, 716, 764, 792, 810, 858, 918, 946, 970, 1030, 1078, 1102, 1110, 1154, 1226, 1274, 1304, 1352
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
nn = 50; t = Table[0, {nn}]; Do[d = x^2 + y^2 + z^2 + u^2; If[0 < d <= nn, t[[d]]++], {x, 0, nn}, {y, 0, nn}, {z, 0, nn}, {u, 0, nn}]; Accumulate[Join[{1}, t]] (* T. D. Noe, Apr 01 2013 *)
-
Python
for n in range(99): k = 0 for x in range(99): s = x*x if s>n: break for y in range(99): sy = s + y*y if sy>n: break for z in range(99): sz = sy + z*z if sz>n: break for u in range(99): su = sz + u*u if su>n: break k+=1 print(str(k), end=', ')
Formula
G.f.: (1/(1 - x))*(Sum_{k>=0} x^(k^2))^4. - Ilya Gutkovskiy, Mar 14 2017
Comments