cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A224490 Smallest k such that k*2*p(n)^2-1=q is prime and k*2*q^2-1 is also prime.

Original entry on oeis.org

1, 1, 25, 9, 21, 3, 1, 16, 25, 136, 10, 33, 90, 250, 10, 55, 1, 9, 36, 75, 1, 4, 33, 406, 103, 15, 121, 4, 244, 78, 28, 19, 49, 105, 45, 34, 10, 46, 33, 4, 111, 15, 9, 36, 118, 66, 10, 13, 31, 76, 66, 36, 55, 15, 4, 48, 6, 66, 13, 34, 54, 64, 153, 1, 60, 48
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Examples

			1*2*2^2-1=7 prime q 1*2*7^2-1=97 also prime so a(1)=1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[k*2*q^2 - 1], Return[k]]]; Table[a[n], {n, 1, 66}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

Typo in name fixed by Zak Seidov, Apr 11 2013

A224492 Smallest k such that k*2*p(n)^2-1=q is prime, k*2*q^2-1=r, k*2*r^2-1=s, k*2*r^2-1=t, r, s, and t are also prime.

Original entry on oeis.org

5103, 36189, 7315, 29608, 128115, 3496, 64590, 143079, 83919, 5586, 13209, 2833, 235339, 61621, 164349, 2668, 84574, 1140, 47335, 108079, 7978, 181366, 146140, 2616, 165864, 86100, 11455, 8925, 23191, 197938, 28194, 229309, 196236, 274186
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Comments

conjecture: a(n) exist for all n
t=k*2*(k*2*(k*2*(k*2*p(n)^2-1)^2-1)^2-1)^2-1
s=k*2*(k*2*(k*2*p(n)^2-1)^2-1)^2-1
r=k*2*(k*2*p(n)^2-1)^2-1
q=k*2*p(n)^2-1

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[r = k*2*q^2 - 1] && PrimeQ[s = k*2*r^2 - 1] && PrimeQ[k*2*s^2 - 1], Return[k]]]; Table[Print[an = a[n]]; an, {n, 1, 34}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

Typo in name fixed by Zak Seidov, Apr 11 2013

A224491 Smallest k such that k*2*p(n)^2-1=q is prime k*2*q^2-1=r k*2*r^2-1=s, r and s are also prime.

Original entry on oeis.org

705, 1, 306, 390, 2539, 526, 1939, 439, 7048, 286, 561, 985, 90, 2385, 2089, 328, 2266, 664, 4245, 2451, 453, 391, 411, 406, 4068, 4975, 8151, 199, 834, 4423, 169, 76, 5710, 861, 3930, 1659, 1246, 2838, 750, 153, 8664, 3730, 1195, 7815, 1746, 1735, 594, 985
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[r = k*2*q^2 - 1] && PrimeQ[k*2*r^2 - 1], Return[k]]]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

Typo in name fixed by Zak Seidov, Apr 11 2013

A224609 Smallest j such that 2*j*prime(n)^3-1 is prime.

Original entry on oeis.org

2, 1, 2, 7, 2, 7, 8, 6, 8, 5, 1, 3, 11, 1, 9, 3, 5, 1, 3, 15, 7, 3, 8, 8, 12, 2, 15, 3, 10, 2, 3, 12, 12, 1, 6, 6, 9, 3, 5, 2, 5, 1, 5, 10, 57, 1, 21, 1, 15, 9, 2, 3, 1, 5, 5, 3, 15, 6, 7, 5, 25, 6, 12, 11, 6, 5, 1, 9, 2, 19, 5, 9, 27, 1, 3, 11, 3, 15, 2, 6, 21
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Comments

We are searching smallest j such that j*prime(n)*2*p(n)^2-1 is prime, for A224489 it is smallest k such that k*2*prime(n)^2-1 is prime, so here we replace smallest k by smallest j*prime(n).

Examples

			1*2*2^3-1= 15 is composite; 2*2*2^3-1= 31 is prime, so a(1)=2 as p(1)=2.
1*2*3^3-1=53 is prime, so a(2)=1 as p(2)=3.
1*2*5^3-1=249 is composite; 2*2*5^3=499 is prime, so a(3)=2 as p(3)=5.
		

Crossrefs

Cf. A224489.

Programs

  • Magma
    S:=[];
    j:=1;
    for n in [1..100] do
      while not IsPrime(2*j*NthPrime(n)^3-1) do
           j:=j+1;
      end while;
      Append(~S, j);
      j:=1;
    end for;
    S; // Bruno Berselli, Apr 18 2013
    
  • Mathematica
    jmax = 10^5 (* sufficient up to 10^5 terms *); a[n_] := For[j = 1, j <= jmax, j++, p = Prime[n]; If[PrimeQ[j*2*p^3 - 1], Return[j]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 18 2013 *)
  • PARI
    a(n)=my(P=2*prime(n)^3,j);while(!isprime(j++*P-1),);j \\ Charles R Greathouse IV, Apr 18 2013

Formula

a(n) = A053989(2p^3) where p is the n-th prime. - Charles R Greathouse IV, Apr 18 2013

A224494 Smallest k such that k*2*p(n)^2+1=q is prime and k*2*q^2+1 is also prime.

Original entry on oeis.org

5, 2, 29, 41, 9, 2, 71, 30, 32, 6, 35, 11, 6, 50, 2, 20, 9, 120, 56, 21, 9, 75, 90, 51, 51, 29, 107, 9, 74, 155, 116, 11, 29, 86, 116, 35, 200, 12, 11, 39, 9, 105, 51, 422, 36, 65, 6, 32, 27, 44, 9, 41, 14, 116, 266, 41, 29, 5, 50, 95, 27, 71, 69, 330, 21, 194
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[k*2*q^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 66}] (* Jean-François Alcover, Apr 12 2013 *)

A224495 Smallest k such that k*2*p(n)^2+1=q is prime 2*k*q^2+1=r 2*k*r^2+1=s, r and s are also prime.

Original entry on oeis.org

9, 126, 29, 237, 420, 2, 186, 30, 2349, 896, 1266, 147, 741, 140, 3021, 924, 19571, 896, 791, 11495, 32, 7016, 3522, 5336, 932, 5480, 107, 1439, 1770, 209, 4239, 1716, 477, 1196, 1446, 900, 9176, 1920, 2375, 39, 2351, 590, 2724, 422, 3171, 179, 1751, 426, 65
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[r = k*2*q^2 + 1] && PrimeQ[k*2*r^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 49}] (* Jean-François Alcover, Apr 12 2013 *)

A224496 Smallest k such that k*2*p(n)^2+1=q is prime, k*2*q^2+1=r, k*2*r^2+1=s, k*2*r^2+1=t, r, s, and t are also prime.

Original entry on oeis.org

386, 2769, 96656, 5366, 420, 34454, 65039, 192215, 458367, 24735, 27155, 777, 736254, 80297, 279927, 113429, 650474, 238919, 8229, 1284345, 642789, 333141, 11510, 1009271, 932, 395126, 1202174, 25811, 204534, 16286, 22094, 2661131, 22530, 128225, 56225, 900
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Comments

Conjecture: a(n) exist for all n
t=k*2*(k*2*(k*2*(k*2*p(n)^2+1)^2+1)^2+1)^2+1
s=k*2*(k*2*(k*2*p(n)^2+1)^2+1)^2+1
r=k*2*(k*2*p(n)^2+1)^2+1
q=k*2*p(n)^2+1

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[r = k*2*q^2 + 1] && PrimeQ[s = k*2*r^2 + 1] && PrimeQ[k*2*s^2 + 1], Return[k]]]; Table[ Print[an = a[n]]; an , {n, 1, 36}] (* Jean-François Alcover, Apr 12 2013 *)

A224493 Smallest k such that k*2*p(n)^2+1 is prime.

Original entry on oeis.org

2, 1, 2, 2, 3, 2, 6, 15, 12, 6, 8, 2, 5, 6, 2, 14, 3, 23, 2, 5, 2, 3, 5, 3, 6, 11, 2, 9, 3, 5, 6, 3, 14, 8, 5, 6, 2, 2, 5, 9, 8, 11, 3, 2, 11, 3, 6, 5, 6, 5, 2, 5, 3, 8, 15, 14, 3, 5, 20, 5, 6, 14, 14, 8, 5, 2, 8, 2, 6, 18, 14, 3, 6, 9, 5, 12, 3, 9, 15, 18, 6, 6, 3
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[k*2*p^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 83}] (* Jean-François Alcover, Apr 12 2013 *)
    sk[n_]:=Module[{k=1},While[!PrimeQ[2*k*n^2+1],k++];k]; Table[sk[n],{n,Prime[ Range[ 90]]}] (* Harvey P. Dale, Sep 22 2019 *)
Showing 1-8 of 8 results.