cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A224489 Smallest k such that k*2*p(n)^2-1 is prime.

Original entry on oeis.org

1, 1, 3, 1, 1, 1, 1, 4, 4, 6, 4, 6, 1, 1, 9, 10, 1, 6, 4, 7, 1, 4, 3, 4, 3, 10, 4, 4, 1, 1, 1, 10, 1, 7, 6, 12, 1, 9, 6, 3, 1, 1, 6, 3, 1, 1, 1, 3, 3, 4, 4, 21, 4, 1, 3, 1, 6, 4, 1, 10, 3, 1, 15, 1, 3, 4, 9, 13, 10, 9, 1, 4, 1, 3, 1, 3, 12, 9, 6, 1, 1, 22, 4, 1
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Examples

			1*2*2^2-1=7 is prime, p(1)=2 so a(1)=1.
1*2*3^2-1=17 is prime, p(2)=3 so a(2)=1.
1*2*5^2-1=49 is composite; 2*2*5^2-1=99 is composite; 3*2*5^2-1=149 is prime, p(3)=5 so a(3)=3.
		

Crossrefs

Programs

  • Magma
    S:=[];
    k:=1;
    for n in [1..90] do
      while not IsPrime(k*2*NthPrime(n)^2-1) do
           k:=k+1;
      end while;
      Append(~S, k);
      k:=1;
    end for;
    S; // Bruno Berselli, Apr 18 2013
  • Mathematica
    a[n_] := For[k = 1, True, k++, If[ PrimeQ[k*2*Prime[n]^2 - 1], Return[k]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 10 2013 *)

A224492 Smallest k such that k*2*p(n)^2-1=q is prime, k*2*q^2-1=r, k*2*r^2-1=s, k*2*r^2-1=t, r, s, and t are also prime.

Original entry on oeis.org

5103, 36189, 7315, 29608, 128115, 3496, 64590, 143079, 83919, 5586, 13209, 2833, 235339, 61621, 164349, 2668, 84574, 1140, 47335, 108079, 7978, 181366, 146140, 2616, 165864, 86100, 11455, 8925, 23191, 197938, 28194, 229309, 196236, 274186
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Comments

conjecture: a(n) exist for all n
t=k*2*(k*2*(k*2*(k*2*p(n)^2-1)^2-1)^2-1)^2-1
s=k*2*(k*2*(k*2*p(n)^2-1)^2-1)^2-1
r=k*2*(k*2*p(n)^2-1)^2-1
q=k*2*p(n)^2-1

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[r = k*2*q^2 - 1] && PrimeQ[s = k*2*r^2 - 1] && PrimeQ[k*2*s^2 - 1], Return[k]]]; Table[Print[an = a[n]]; an, {n, 1, 34}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

Typo in name fixed by Zak Seidov, Apr 11 2013

A224491 Smallest k such that k*2*p(n)^2-1=q is prime k*2*q^2-1=r k*2*r^2-1=s, r and s are also prime.

Original entry on oeis.org

705, 1, 306, 390, 2539, 526, 1939, 439, 7048, 286, 561, 985, 90, 2385, 2089, 328, 2266, 664, 4245, 2451, 453, 391, 411, 406, 4068, 4975, 8151, 199, 834, 4423, 169, 76, 5710, 861, 3930, 1659, 1246, 2838, 750, 153, 8664, 3730, 1195, 7815, 1746, 1735, 594, 985
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[r = k*2*q^2 - 1] && PrimeQ[k*2*r^2 - 1], Return[k]]]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

Typo in name fixed by Zak Seidov, Apr 11 2013

A224494 Smallest k such that k*2*p(n)^2+1=q is prime and k*2*q^2+1 is also prime.

Original entry on oeis.org

5, 2, 29, 41, 9, 2, 71, 30, 32, 6, 35, 11, 6, 50, 2, 20, 9, 120, 56, 21, 9, 75, 90, 51, 51, 29, 107, 9, 74, 155, 116, 11, 29, 86, 116, 35, 200, 12, 11, 39, 9, 105, 51, 422, 36, 65, 6, 32, 27, 44, 9, 41, 14, 116, 266, 41, 29, 5, 50, 95, 27, 71, 69, 330, 21, 194
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[k*2*q^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 66}] (* Jean-François Alcover, Apr 12 2013 *)

A224495 Smallest k such that k*2*p(n)^2+1=q is prime 2*k*q^2+1=r 2*k*r^2+1=s, r and s are also prime.

Original entry on oeis.org

9, 126, 29, 237, 420, 2, 186, 30, 2349, 896, 1266, 147, 741, 140, 3021, 924, 19571, 896, 791, 11495, 32, 7016, 3522, 5336, 932, 5480, 107, 1439, 1770, 209, 4239, 1716, 477, 1196, 1446, 900, 9176, 1920, 2375, 39, 2351, 590, 2724, 422, 3171, 179, 1751, 426, 65
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[r = k*2*q^2 + 1] && PrimeQ[k*2*r^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 49}] (* Jean-François Alcover, Apr 12 2013 *)

A224496 Smallest k such that k*2*p(n)^2+1=q is prime, k*2*q^2+1=r, k*2*r^2+1=s, k*2*r^2+1=t, r, s, and t are also prime.

Original entry on oeis.org

386, 2769, 96656, 5366, 420, 34454, 65039, 192215, 458367, 24735, 27155, 777, 736254, 80297, 279927, 113429, 650474, 238919, 8229, 1284345, 642789, 333141, 11510, 1009271, 932, 395126, 1202174, 25811, 204534, 16286, 22094, 2661131, 22530, 128225, 56225, 900
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Comments

Conjecture: a(n) exist for all n
t=k*2*(k*2*(k*2*(k*2*p(n)^2+1)^2+1)^2+1)^2+1
s=k*2*(k*2*(k*2*p(n)^2+1)^2+1)^2+1
r=k*2*(k*2*p(n)^2+1)^2+1
q=k*2*p(n)^2+1

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[r = k*2*q^2 + 1] && PrimeQ[s = k*2*r^2 + 1] && PrimeQ[k*2*s^2 + 1], Return[k]]]; Table[ Print[an = a[n]]; an , {n, 1, 36}] (* Jean-François Alcover, Apr 12 2013 *)

A224610 Smallest j such that j*2*prime(n)^3-1 and j*2*prime(n)*q^2-1 are prime.

Original entry on oeis.org

2, 2, 5, 7, 59, 142, 264, 25, 8, 21, 124, 33, 60, 87, 9, 231, 5, 6, 82, 155, 7, 66, 72, 21, 42, 105, 15, 48, 250, 68, 222, 54, 47, 195, 255, 360, 205, 6, 83, 26, 5, 1, 50, 220, 173, 1, 976, 30, 228, 130, 30, 129, 46, 1106, 65, 62, 15, 109, 24, 41, 922, 15, 132, 89
Offset: 1

Views

Author

Pierre CAMI, Apr 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[p = Prime[n]; j = 1, j < 10^6, j++, If[PrimeQ[q = j*2*p^3 - 1] && PrimeQ[j*p*2*q^2 - 1], Return[j]]]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Apr 22 2013 *)

A224493 Smallest k such that k*2*p(n)^2+1 is prime.

Original entry on oeis.org

2, 1, 2, 2, 3, 2, 6, 15, 12, 6, 8, 2, 5, 6, 2, 14, 3, 23, 2, 5, 2, 3, 5, 3, 6, 11, 2, 9, 3, 5, 6, 3, 14, 8, 5, 6, 2, 2, 5, 9, 8, 11, 3, 2, 11, 3, 6, 5, 6, 5, 2, 5, 3, 8, 15, 14, 3, 5, 20, 5, 6, 14, 14, 8, 5, 2, 8, 2, 6, 18, 14, 3, 6, 9, 5, 12, 3, 9, 15, 18, 6, 6, 3
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[k*2*p^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 83}] (* Jean-François Alcover, Apr 12 2013 *)
    sk[n_]:=Module[{k=1},While[!PrimeQ[2*k*n^2+1],k++];k]; Table[sk[n],{n,Prime[ Range[ 90]]}] (* Harvey P. Dale, Sep 22 2019 *)
Showing 1-8 of 8 results.