A225574
Additive endpoints: range of A225561.
Original entry on oeis.org
1, 3, 7, 12, 15, 28, 31, 39, 42, 56, 60, 63, 72, 90, 91, 96, 120, 124, 127, 144, 168, 180, 186, 195, 210, 217, 224, 234, 248, 252, 255, 280, 312, 336, 360, 363, 372, 378, 392, 399, 403, 434, 465, 468, 480, 504, 508, 511, 546, 558, 560, 576, 588, 600, 620, 672, 684, 702, 720, 728, 744
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Pollack and Lola Thompson, Practical pretenders, Publicationes Mathematicae Debrecen, Vol. 82, No. 3-4 (2013), pp. 651-717, arXiv preprint, arXiv:1201.3168 [math.NT], 2012.
-
b[n_] := b[n] = First[Complement[Range[DivisorSigma[1, n] + 1], Total /@ Subsets[Divisors[n]]]] - 1; Sort[Tally[Array[b, 300]]][[All, 1]] (* Jean-François Alcover, Sep 27 2018 *)
m = 1000; f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most @ fct]), ?(# > 1 &)]) == {}; prac = Select[Range[m], pracQ]; Union @ Select[DivisorSigma[1, prac], # <= m &] (* _Amiram Eldar, Sep 27 2019 *)
A119347
Number of distinct sums of distinct divisors of n. Here 0 (as the sum of an empty subset) is excluded from the count.
Original entry on oeis.org
1, 3, 3, 7, 3, 12, 3, 15, 7, 15, 3, 28, 3, 15, 15, 31, 3, 39, 3, 42, 15, 15, 3, 60, 7, 15, 15, 56, 3, 72, 3, 63, 15, 15, 15, 91, 3, 15, 15, 90, 3, 96, 3, 63, 55, 15, 3, 124, 7, 63, 15, 63, 3, 120, 15, 120, 15, 15, 3, 168, 3, 15, 59, 127, 15, 144, 3, 63, 15, 142, 3, 195, 3, 15, 63, 63
Offset: 1
a(5)=3 because the divisors of 5 are 1 and 5 and all the possible sums: are 1,5 and 6; a(6)=12 because we can form all sums 1,2,...,12 by adding up the terms of a nonempty subset of the divisors 1,2,3,6 of 6.
Cf.
A000203,
A002093,
A005153,
A027750,
A030057,
A033630,
A093890,
A100587,
A119348,
A193279,
A225561,
A237290,
A378447,
A378450,
A378451.
Cf.
A083207 (positions of even terms).
-
import Data.List (subsequences, nub)
a119347 = length . nub . map sum . tail . subsequences . a027750_row'
-- Reinhard Zumkeller, Jun 27 2015
-
with(numtheory): with(linalg): a:=proc(n) local dl,t: dl:=convert(divisors(n),list): t:=tau(n): nops({seq(innerprod(dl,convert(2^t+i,base,2)[1..t]),i=1..2^t-1)}) end: seq(a(n),n=1..90);
-
a[n_] := Total /@ Rest[Subsets[Divisors[n]]] // Union // Length;
Array[a, 100] (* Jean-François Alcover, Jan 27 2018 *)
-
A119347(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); sum(i=1,poldegree(p),(0Antti Karttunen, Nov 28 2024
-
A119347(n) = { my(c=[0]); fordiv(n, d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c)-1; }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
-
from sympy import divisors
def A119347(n):
c = {0}
for d in divisors(n,generator=True):
c |= {a+d for a in c}
return len(c)-1 # Chai Wah Wu, Jul 05 2023
A307223
Irregular table T(n, k) read by rows: n-th row gives number of subsets of the divisors of n which sum to k for 1 <= k <= sigma(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1
Offset: 1
Table begins as:
1
1,1,1
1,0,1,1
1,1,1,1,1,1,1
1,0,0,0,1,1
1,1,2,1,1,2,1,1,2,1,1,1
1,0,0,0,0,0,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
1,0,1,1,0,0,0,0,1,1,0,1,1
1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1
-
T[n_,k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; Table[T[n, k], {n,1,10}, {k, 1, DivisorSigma[1,n]}] // Flatten
A327832
The practical component of n: the largest divisor of n which is a practical number (A005153).
Original entry on oeis.org
1, 2, 1, 4, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 2, 1, 24, 1, 2, 1, 28, 1, 30, 1, 32, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 56, 1, 2, 1, 60, 1, 2, 1, 64, 1, 66, 1, 4, 1, 2, 1, 72, 1, 2, 1, 4, 1, 78, 1, 80, 1
Offset: 1
a(22) = 2 since the divisors of 22 are {1, 2, 11, 22}, of them {1, 2} are practical, and 2 being the largest.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Pollack and Lola Thompson, Practical pretenders, Publicationes Mathematicae Debrecen, Vol. 82, No. 3-4 (2013), pp. 651-717, arXiv preprint, arXiv:1201.3168 [math.NT], 2012.
- Andreas Weingartner, Integers with large practical component, Publicationes Mathematicae Debrecen, Vol. 87, No. 3-4 (2015), pp. 439-447, arXiv preprint, arXiv:1411.6974v2 [math.NT], 2014-2015.
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[n_] := If[(ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}, n, Times @@ (Power @@@ fct[[1 ;; ind[[1, 1]] - 1]])]; Array[a, 100]
-
\\ using is_A005153
a(n) = fordiv(n, d, if(is_A005153(n/d), return(n/d))); \\ Michel Marcus, Jul 03 2021
Showing 1-4 of 4 results.
Comments