cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007619 Wilson quotients: ((p-1)! + 1)/p where p is the n-th prime.

Original entry on oeis.org

1, 1, 5, 103, 329891, 36846277, 1230752346353, 336967037143579, 48869596859895986087, 10513391193507374500051862069, 8556543864909388988268015483871, 10053873697024357228864849950022572972973, 19900372762143847179161250477954046201756097561, 32674560877973951128910293168477013254334511627907
Offset: 1

Views

Author

Keywords

Comments

Suggested by the Wilson-Lagrange Theorem: An integer p > 1 is a prime if and only if (p-1)! == -1 (mod p).
Define b(n) = ((n-1)*(n^2 - 3*n + 1)*b(n-1) - (n-2)^3*b(n-2) )/(n*(n-3)); b(2) = b(3) = 1; sequence gives b(primes).
Subsequence of the generalized Wilson quotients A157249. - Jonathan Sondow, Mar 04 2016
a(n) is an integer because of to Wilson's theorem (Theorem 80, p. 68, the if part of Theorem 81, p. 69, given in Hardy and Wright). See the first comment. `This theorem is of course quite useless as a practical test for the primality of a given number n' ( op. cit., p. 69). - Wolfdieter Lang, Oct 26 2017

Examples

			The 4th prime is 7, so a(4) = (6! + 1)/7 = 103.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, Clarendon Press, Oxford, 2003.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 277.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 234.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005450, A005451, A007540 (Wilson primes), A050299, A163212, A225672, A225906.
Cf. A261779.
Cf. A157249, A157250, A292691 (twin prime analog quotient).

Programs

Formula

a(n) = A157249(prime(n)). - Jonathan Sondow, Mar 04 2016

Extensions

Definition clarified by Jonathan Sondow, Aug 05 2011

A050299 Numbers k such that ((k-1)! + 1)/k is prime.

Original entry on oeis.org

1, 5, 7, 11, 29, 773, 1321, 2621
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2003

Keywords

Comments

Except for the first term, all terms are primes because for n > 1, n divides (n-1)! + 1 iff n is prime. - Farideh Firoozbakht, Mar 19 2004
a(9) >= 30941.

Examples

			7 is in the sequence because (6!+1)/7=103 is prime.
		

Programs

  • Mathematica
    v={1};Do[If[PrimeQ[((Prime[n]-1)!+1)/Prime[n]], v=Append[v, Prime[n]];Print[v]], {n, 845}]
    Select[Range[2630],PrimeQ[((#-1)!+1)/#]&] (* Harvey P. Dale, Aug 18 2024 *)
  • PARI
    is(n)=((n-1)!+1)%n==0 && isprime(((n-1)!+1)/n) \\ Anders Hellström, Nov 22 2015

Formula

((a(n)-1)! + 1)/a(n) = A122696(n) = A007619(A000720(A050299(n))) for n > 1. - Jonathan Sondow, Aug 07 2011
a(n) = prime(A225906(n-1)) for n > 1. - Jonathan Sondow, May 20 2013

Extensions

a(7)-a(8) from Mike Oakes, Aug 20 2003

A163212 Wilson quotients (A007619) which are primes.

Original entry on oeis.org

5, 103, 329891, 10513391193507374500051862069
Offset: 1

Views

Author

Peter Luschny, Jul 24 2009

Keywords

Comments

a(5) = A007619(137), a(6) = A007619(216), a(7) = A007619(381).
Same as A122696 without its initial term 2. - Jonathan Sondow, May 19 2013

Examples

			The quotient (720+1)/7 = 103 is a Wilson quotient and a prime, so 103 is a member.
		

Crossrefs

Programs

  • Maple
    # WQ defined in A163210.
    A163212 := n -> select(isprime,WQ(factorial,p->1,n)):
  • Mathematica
    Select[Table[p = Prime[n]; ((p-1)!+1)/p, {n, 1, 15}], PrimeQ] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    forprime(p=2, 1e4, a=((p-1)!+1)/p; if(ispseudoprime(a), print1(a, ", "))) \\ Felix Fröhlich, Aug 03 2014

Formula

a(n) = A122696(n+1) = A007619(A225906(n)) = ((A050299(n+1)-1)!+1)/A050299(n+1). - Jonathan Sondow, May 19 2013
Showing 1-3 of 3 results.