Original entry on oeis.org
1, 5, 7, 11, 29, 773, 1321, 2621
Offset: 1
A007619
Wilson quotients: ((p-1)! + 1)/p where p is the n-th prime.
Original entry on oeis.org
1, 1, 5, 103, 329891, 36846277, 1230752346353, 336967037143579, 48869596859895986087, 10513391193507374500051862069, 8556543864909388988268015483871, 10053873697024357228864849950022572972973, 19900372762143847179161250477954046201756097561, 32674560877973951128910293168477013254334511627907
Offset: 1
The 4th prime is 7, so a(4) = (6! + 1)/7 = 103.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, Clarendon Press, Oxford, 2003.
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 277.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 234.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert G. Wilson v, Table of n, a(n) for n = 1..100
- Aminu Alhaji Ibrahim, Sa’idu Isah Abubaka, Aunu Integer Sequence as Non-Associative Structure and Their Graph Theoretic Properties, Advances in Pure Mathematics, 2016, 6, 409-419.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
- H. S. Wilf, Problem 10578, Amer. Math. Monthly, 104 (1997), 270.
A163212
Wilson quotients (A007619) which are primes.
Original entry on oeis.org
5, 103, 329891, 10513391193507374500051862069
Offset: 1
The quotient (720+1)/7 = 103 is a Wilson quotient and a prime, so 103 is a member.
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Primes.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
-
# WQ defined in A163210.
A163212 := n -> select(isprime,WQ(factorial,p->1,n)):
-
Select[Table[p = Prime[n]; ((p-1)!+1)/p, {n, 1, 15}], PrimeQ] (* Jean-François Alcover, Jun 28 2013 *)
-
forprime(p=2, 1e4, a=((p-1)!+1)/p; if(ispseudoprime(a), print1(a, ", "))) \\ Felix Fröhlich, Aug 03 2014
A122696
Primes of the form ((k-1)! + 1)/k.
Original entry on oeis.org
2, 5, 103, 329891, 10513391193507374500051862069
Offset: 1
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
A050299 is the main entry for this sequence.
-
Select[Table[((k-1)!+1)/k,{k,30}],PrimeQ] (* James C. McMahon, Nov 09 2024 *)
-
is(n)=isprime(((n-1)!+1)/n) \\ Anders Hellström, Nov 22 2015 \\ This program actually produces A050299 - Michel Marcus, Aug 02 2016
-
for(n=1, 1e2, if(((n-1)!+1)%n==0 && isprime(k=((n-1)!+1)/n), print1(k, ", "))) \\ Altug Alkan, Nov 22 2015
The next term is too large to include.
a(4) and first comment corrected by
Gionata Neri, Aug 02 2016
A084750
Numbers k such that k! - p is a prime, where p is the smallest prime > k.
Original entry on oeis.org
4, 5, 10, 11, 12, 14, 29, 53, 81, 90, 116, 236, 323, 346, 1172, 2957, 8400, 14906
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 16 2003
10 is in the sequence because 10! = 3628800, NextPrime(10) = 11 and 3628800 - 11 = 3628789 is prime.
A225906
Indices of primes whose Wilson quotients are also prime.
Original entry on oeis.org
3, 4, 5, 10, 137, 216, 381
Offset: 1
The Wilson quotient of 7 is ((7-1)!+1)/7 = 103, which is prime, and 7 is the 4th prime, so 4 is a member.
- J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113
- J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
A225672
Primes p such that the Wilson quotient of the p-th prime is also prime.
Original entry on oeis.org
The 5th prime is 11 and the Wilson quotient of 11 is ((11-1)!+1)/11 = 329891, which is prime, so 5 is a term.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
A317507
Numbers k whose generalized Wilson quotient A157249(k) is prime.
Original entry on oeis.org
1, 5, 7, 8, 10, 11, 29, 62, 486, 614, 773, 1321, 1906, 2621
Offset: 1
-
p[n_] := Times @@ Select[Range[n], CoprimeQ[n, #] &]; e[1 | 2 | 4] = 1; e[n_] := (fi = FactorInteger[n]; If[MatchQ[fi, {{(p_)?OddQ, }} | {{2, 1}, {, }}], 1, -1]); a[n] := (p[n] + e[n])/n; n = 1; s={}; Do[If[PrimeQ[a[n]], AppendTo[s,n]], {n, 1, 1000}]; s (* after Jean-François Alcover at A157249 *)
-
phito(n) = prod(k=2, n-1, k^(gcd(k, n)==1)); \\ A001783
is(n) = if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2, &n) && n>2)); \\ A033948
e(n) = if (is(n), 1, -1);
gw(n) = (phito(n)+e(n))/n;
isok(n) = isprime(gw(n)); \\ Michel Marcus, Oct 28 2018
Showing 1-8 of 8 results.
Comments