cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A226531 Cubes that become prime when their least-significant (rightmost) digit is removed.

Original entry on oeis.org

27, 3375, 4096, 4913, 35937, 97336, 110592, 148877, 421875, 681472, 1191016, 1442897, 1560896, 2628072, 3241792, 3581577, 3869893, 4741632, 5359375, 8998912, 10218313, 12649337, 16777216, 16974593, 21253933, 26730899, 31255875, 32157432, 43986977, 45882712
Offset: 1

Views

Author

Keywords

Examples

			4096 = 16^3, and becomes the prime number 409 when truncated.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000]^3,PrimeQ[Floor[#/10]]&] (* Harvey P. Dale, May 28 2021 *)
  • R
    library(gmp)trimR=function(x) { x=as.character(x); ifelse(nchar(x)<2,0,substr(x,1,nchar(x)-1)) }
    y=as.bigz(rep(0,10000)); len=0; n=as.bigz(-1)
    while(len<10000) if(isprime(trimR((n=n+1)^3))) y[(len=len+1)]=n^3

A234787 Cubes (with at least two digits) that become squares when their rightmost digit is removed.

Original entry on oeis.org

1000, 64000, 729000, 4096000, 15625000, 46656000, 117649000, 262144000, 531441000, 1000000000, 1771561000, 2985984000, 4826809000, 7529536000, 11390625000, 16777216000, 24137569000, 34012224000, 47045881000, 64000000000
Offset: 1

Views

Author

Reiner Moewald, Dec 30 2013

Keywords

Comments

With the help of the Nagell-Lutz theorem it is easy to prove that there are no other solutions than those of the form 1000*n^6.

Crossrefs

Cf. A226354.
Subsequence of A000578.

Programs

  • PARI
    lista(nn) = {for (n=1, nn, if (((cb = n^3) > 10) && issquare(cb\10), print1(cb, ", ")););} \\ Michel Marcus, Jan 10 2014
    
  • PARI
    Vec(1000*x*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Dec 15 2019

Formula

a(n) = 1000*n^6.
From Colin Barker, Dec 15 2019: (Start)
G.f.: 1000*x*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A265211 Squares that become prime when their rightmost digit is removed.

Original entry on oeis.org

25, 36, 196, 676, 1936, 2116, 3136, 4096, 5476, 5776, 7396, 8836, 11236, 21316, 23716, 26896, 42436, 51076, 55696, 59536, 64516, 65536, 75076, 81796, 87616, 92416, 98596, 106276, 118336, 119716, 132496, 179776, 190096, 198916, 206116, 215296, 256036, 274576, 287296
Offset: 1

Views

Author

K. D. Bajpai, Dec 05 2015

Keywords

Comments

All the terms in this sequence, except a(1) end in digit 6.
All the terms except a(2) are congruent to 1 (mod 3).
All terms except a(1) are of the form 10*p+6 where p is a prime of the form 10*x^2 + 8*x + 1 or 10*x^2 + 12*x + 3. The Bunyakovsky conjecture implies that there are infinitely many of both of these types. - Robert Israel, Jan 12 2016

Examples

			196 = 14^2 becomes the prime 19 when its rightmost digit is removed.
3136 = 56^2 becomes the prime 313 when its rightmost digit is removed.
		

Crossrefs

Programs

  • Magma
    [k: n in [1..100] | IsPrime(Floor(k/10)) where k is n^2];
  • Maple
    select(t -> isprime(floor(t/10)), [seq(i^2, i=1..1000)]); # Robert Israel, Jan 12 2016
  • Mathematica
    A265211 = {}; Do[k = n^2; If[PrimeQ[Floor[k/10]], AppendTo[A265211 , k]], {n, 1500}]; A265211
    Select[Range[540]^2,PrimeQ[FromDigits[Most[IntegerDigits[#]]]]&] (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    for(n=1,1000, k=n^2; if(isprime(k\10), print1(k, ", ")));
    
Showing 1-3 of 3 results.