cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226459 a(n) = Sum_{d|n} phi(d^d), where phi(n) is the Euler totient function A000010(n).

Original entry on oeis.org

1, 3, 19, 131, 2501, 15573, 705895, 8388739, 258280345, 4000002503, 259374246011, 2972033498453, 279577021469773, 4762288640230761, 233543408203127519, 9223372036863164547, 778579070010669895697, 13115469358432437487707, 1874292305362402347591139
Offset: 1

Views

Author

Paul D. Hanna, Jun 08 2013

Keywords

Comments

Compare formula to the identity: Sum_{d|n} phi(d) = n.

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 19*x^3/3 + 131*x^4/4 + 2501*x^5/5 + ...
where
exp(L(x)) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 547*x^5 + 3193*x^6 + ... + A226458(n)*x^n + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (&+[EulerPhi(k^k)*x^k/(1-x^k): k in [1..3*m]]) )); // G. C. Greubel, Nov 07 2018
    
  • Mathematica
    ttf[n_]:=Module[{d=Divisors[n]},Total[EulerPhi[d^d]]]; Array[ttf,20] (* Harvey P. Dale, Aug 21 2013 *)
    With[{nmax = 30}, Rest[CoefficientList[Series[Sum[EulerPhi[k^k]*x^k/(1 - x^k), {k, 1, 2*nmax}], {x, 0, nmax}], x]]] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    {a(n)=sumdiv(n,d, eulerphi(d^d))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=1, n, (n/gcd(k, n))^(n/gcd(k, n)-1)); \\ Seiichi Manyama, Mar 11 2021
    
  • Python
    from sympy import totient, divisors
    def A226459(n):
        return sum(totient(d)*d**(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

a(n) = Sum_{d|n} d^(d-1) * phi(d).
Equals the logarithmic derivative of A226458.
G.f.: Sum_{k>=1} phi(k^k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{k=1..n} (n/gcd(k,n))^(n/gcd(k,n)-1). - Seiichi Manyama, Mar 11 2021
From Richard L. Ollerton, May 08 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k)^gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi((n/gcd(n,k))^(n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} gcd(n,k)^(gcd(n,k)-1)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)