cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226561 a(n) = Sum_{d|n} d^n * phi(d), where phi(n) is the Euler totient function A000010(n).

Original entry on oeis.org

1, 5, 55, 529, 12501, 94835, 4941259, 67240193, 2324562301, 40039063525, 2853116706111, 35668789979107, 3634501279107037, 66676110291801575, 3503151245145885315, 147575078498173255681, 13235844190181388226833, 236079349222711695887225, 35611553801885644604231623
Offset: 1

Views

Author

Paul D. Hanna, Jun 10 2013

Keywords

Comments

Compare formula to the identity: Sum_{d|n} phi(d) = n.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 55*x^3/3 + 529*x^4/4 + 12501*x^5/5 + 94835*x^6/6 + ...
where
exp(L(x)) = 1 + x + 3*x^2 + 21*x^3 + 155*x^4 + 2691*x^5 + 18924*x^6 + 732230*x^7 + 9223166*x^8 + ... + A226560(n)*x^n + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (&+[EulerPhi(k)*(k*x)^k/(1-(k*x)^k): k in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018
    
  • Maple
    f:= n -> add(d^n * numtheory:-phi(d), d = numtheory:-divisors(n)):
    map(f, [$1..40]); # Robert Israel, Jun 16 2017
  • Mathematica
    Table[DivisorSum[n, #*EulerPhi[#^n]  &], {n, 1, 30}]  (* or *) With[{nmax = 30}, Rest[CoefficientList[Series[Sum[EulerPhi[k]*(k*x)^k/(1 - (k*x)^k), {k, 1, 2*nmax}], {x, 0, nmax}], x]]]  (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    {a(n)=sumdiv(n, d, d^n*eulerphi(d))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=1, n, (n/gcd(k, n))^n); \\ Seiichi Manyama, Mar 11 2021
    
  • Python
    from sympy import totient, divisors
    def A226561(n):
        return sum(totient(d)*d**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

Logarithmic derivative of A226560.
a(n) = Sum_{d|n} d * phi(d^n).
a(n) = Sum_{d|n} phi(d^(n+1)).
a(n) = Sum_{d|n} phi(d^(n+2))/d.
a(n) = Sum_{d|n} d^(n-k+1) * phi(d^k) for k >= 1.
G.f.: Sum_{k>=1} phi(k)*(k*x)^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{k=1..n} (n/gcd(k,n))^n. - Seiichi Manyama, Mar 11 2021
a(n) = Sum_{k=1..n} gcd(n,k)^n*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 10 2021