cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A187798 Decimal expansion of (3-phi)/2, where phi is the golden ratio.

Original entry on oeis.org

6, 9, 0, 9, 8, 3, 0, 0, 5, 6, 2, 5, 0, 5, 2, 5, 7, 5, 8, 9, 7, 7, 0, 6, 5, 8, 2, 8, 1, 7, 1, 8, 0, 9, 4, 1, 1, 3, 9, 8, 4, 5, 4, 1, 0, 0, 9, 7, 1, 1, 8, 5, 6, 8, 9, 3, 2, 2, 7, 5, 6, 8, 8, 6, 4, 7, 3, 6, 9, 7, 6, 8, 5, 9, 0, 5, 4, 8, 7, 7, 5, 1, 4, 6, 3, 9, 6, 3, 9, 7, 9, 0, 5, 3, 0, 4, 4, 3, 1, 2, 5, 7, 6, 2, 2
Offset: 0

Views

Author

Joost Gielen, Aug 30 2013

Keywords

Comments

This is the height h of the isosceles triangle in a regular pentagon inscribed in the unit circle formed from a diagonal as base and two adjacent pentagon sides. h = sqrt(sqrt(3-phi)^2 - (sqrt(2 + phi)/2)^2) = sqrt(10 - 5*phi)/2 = (3 - phi)/2. - Wolfdieter Lang, Jan 07 2018

Examples

			0.6909830056250525758977065828171809411398454100971185689322756886473697685905...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3 - GoldenRatio)/2, 10, 111][[1]] (* or *)
    RealDigits[(5 - Sqrt[5])/4, 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    (5-sqrt(5))/4 \\ Charles R Greathouse IV, Aug 31 2013

Formula

Equals (3-phi)/2 = A094874/2 with phi from A001622.
From Amiram Eldar, Nov 28 2024: (Start)
Equals 1/A344212.
Equals Product_{k>=0} (1 - 1/A081011(k)). (End)

Extensions

Extended by Charles R Greathouse IV, Aug 31 2013

A187426 Decimal expansion of (3-phi)^2 = 10 - 5*phi where phi is the golden ratio.

Original entry on oeis.org

1, 9, 0, 9, 8, 3, 0, 0, 5, 6, 2, 5, 0, 5, 2, 5, 7, 5, 8, 9, 7, 7, 0, 6, 5, 8, 2, 8, 1, 7, 1, 8, 0, 9, 4, 1, 1, 3, 9, 8, 4, 5, 4, 1, 0, 0, 9, 7, 1, 1, 8, 5, 6, 8, 9, 3, 2, 2, 7, 5, 6, 8, 8, 6, 4, 7, 3, 6, 9, 7, 6, 8, 5, 9, 0, 5, 4, 8, 7, 7, 5, 1, 4
Offset: 1

Views

Author

Joost Gielen, Aug 30 2013

Keywords

Comments

This is an integer in Q(sqrt(5)). - Wolfdieter Lang, Jan 07 2018

Examples

			1.909830...
		

Crossrefs

Cf. A226765.
Apart from the first digit the same as A187798.

Programs

Formula

(3-phi)^2 = 5/phi^2 = 10 - 5*phi.
Smaller root of x^2 - 15x + 25 = 0.
Equals 10*A187798-5. - R. J. Mathar, Feb 08 2023

Extensions

Corrected and extended by Charles R Greathouse IV, Aug 31 2013

A225667 Decimal expansion of 13-5*sqrt(5).

Original entry on oeis.org

1, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Jul 21 2013

Keywords

Comments

Let d(n) = - 2*F(n) + h(2 + F(n+1), 1 + F(n+2)), where h = harmonic mean, F = A000045 (Fibonacci numbers). Then floor(d(n)) = 2F(n) + 1 for n>1, and limit(d(n)) = 13 - 5*sqrt(5).
Apart from leading digits the same as A132338, A109866, A094874 and A079585. - R. J. Mathar, Jul 30 2013

Examples

			13-5*sqrt(5) = 1.819660112501051517954131656343618822797...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Fibonacci[n]; h[n_] := HarmonicMean[{2 + f[n + 1], 1 + f[n + 2]}]; x = Limit[-2 f[n] + h[n], n -> Infinity] (* "proof" *)
    d = RealDigits[x, 10, 120][[1]] (* A225667 *)

A322259 Decimal expansion of exp(-9 + 5*phi), where phi is the golden ratio.

Original entry on oeis.org

4, 0, 2, 5, 9, 2, 6, 3, 6, 3, 2, 2, 4, 7, 8, 2, 4, 7, 5, 7, 4, 4, 6, 7, 2, 1, 5, 8, 4, 3, 9, 9, 0, 1, 6, 4, 3, 7, 4, 6, 4, 1, 4, 8, 2, 4, 4, 4, 4, 0, 9, 3, 7, 3, 9, 5, 1, 6, 8, 4, 2, 3, 1, 9, 1, 4, 1, 8, 5, 3, 0, 3, 1, 2, 6, 8, 8, 5, 3, 3, 7, 1, 4, 6, 7, 6, 5
Offset: 0

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Examples

			0.40259263632247824757446721584399016437464148244440...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(-(13-5*Sqrt(5))/2); // G. C. Greubel, Dec 16 2018
    
  • Maple
    evalf[100](exp(-9+5*(1+sqrt(5))/2)); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    RealDigits[Exp[-9+5*GoldenRatio], 10, 120][[1]]
  • PARI
    exp(-(13-5*sqrt(5))/2) \\ Michel Marcus, Dec 02 2018
    
  • Sage
    numerical_approx(exp(-(9-5*golden_ratio)), digits=100) # G. C. Greubel, Dec 16 2018

Formula

Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(mu(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and mu(k) is the Moebius function.
Equals exp(-A226765).
Showing 1-4 of 4 results.